\(\left(x-\frac{2}{3}\right)^2=\frac{16}{9}\)
\(3,2.\frac{15}{16}-\left(75\%+\frac{2}{7}\right):\left(-1\frac{1}{28}\right)\)
\(\left(0,25+12,5-\frac{5}{16}\right):\left[12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right]\)
\(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(14,5-\frac{8}{9}:\left(35-34\frac{8}{9}\right).\frac{9}{8}\)
\(1\frac{1}{15}-\left(\frac{1}{15}+\frac{4}{9}:\frac{-2}{3}-\frac{28}{16}.\frac{6}{35}\right)-\frac{3}{10}\)
Tìm x
\(\left(4,5-2x\right)\left(-3\frac{2}{3}\right)=\frac{11}{15}\)
\(\backslash34-x\backslash=\left(-3\right)^4\)
\(\left(4x^2-1\right)\left(\text{\x}\backslash-\frac{2}{3}\right)=0\)
\(\frac{3}{5}x-\frac{1}{2}\)\(x=\frac{-7}{20}\)
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
nhớ làm giúp mình nhá mai mình phải đi học r :<
Tìm x:
a,\(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{\frac{2}{5}+\frac{4}{9}-\frac{5}{11}}{\frac{8}{5}+\frac{16}{9}-\frac{20}{11}}\)
b,\(\left|2x-\frac{1}{3}\right|-\left(-2^2\right)=4\left(\frac{1}{-2}\right)^3\)
Giúp mik với
Tính
a)\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right).\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^2\)
b)\(\left(-\sqrt{\frac{5}{4}}\right)^2-\sqrt{\frac{9}{4}}:\left(-4,5\right)-\sqrt{\frac{25}{16}}.\sqrt{\frac{64}{9}}\)
c)\(-2^4-\left(-2\right)^2:\left(-\sqrt{\frac{16}{121}}\right)-\left(-\sqrt{\frac{2}{3}}\right)^2:\left(-2\frac{2}{3}\right)\)
\(\left(\frac{1}{3}x-\frac{1}{4}\right)^2+\left(x^2-\frac{9}{16}\right)^4=0\)
=> 1/3x-1/4+x^2-9/16=0
=(1/3x+x/2)+....
các bước sau tự giải
Ta có: \(\hept{\begin{cases}\left(\frac{1}{3}x-\frac{1}{4}\right)^2\ge0;\forall x\\\left(x^2-\frac{9}{16}\right)^4\ge0;\forall x\end{cases}}\)\(\Rightarrow\left(\frac{1}{3}x-\frac{1}{4}\right)^2+\left(x^2-\frac{9}{16}\right)^4\ge0;\forall x\)
Do đó \(\left(\frac{1}{3}x-\frac{1}{4}\right)^2+\left(x^2-\frac{9}{16}\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{3}x-\frac{1}{4}\right)^2=0\\\left(x^2-\frac{9}{16}\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\x=\pm\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow x=\frac{3}{4}\)
Vậy \(x=\frac{3}{4}\)
\(\left(\frac{1}{3}x-\frac{1}{4}\right)^2+\left(x^2-\frac{9}{16}\right)^4=0\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}=0\\x^2-\frac{9}{16}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x=\frac{1}{4}\\x^2=\frac{9}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\end{cases}\Rightarrow}x=\frac{3}{4}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}=0\\x^2-\frac{9}{16}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x=\frac{1}{4}\\x^2=\frac{9}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\x=\pm\frac{3}{4}\end{cases}\Rightarrow}x=\frac{3}{4}}\)
Vậy x=3/4
hok tốt
Tính
a/ \(\left(x-3\right)\left(x^2+3x+9\right)\)
b/ \(\left(x-2\right)\left(x^2+2x+4\right)\)
c/ \(\left(x+4\right)\left(x^2-4x+16\right)\)
d/ \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
e/ \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
f/ \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)
\(=x^3-3^3=x^3-27\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)
\(=x^3-2^3=x^3-8\)
c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)
\(=x^3+4^3=x^3+64\)
d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)
\(=x^6-\frac{1}{27}\)
f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)
số nguyên x thỏa mãn :\(\left(\left(\frac{3}{4}\right)^3\right)^2=\left(\frac{16}{9}\right)^x\)
\(\left(\left(\frac{3}{4}\right)^3\right)^2=\left(\frac{9}{16}\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\left(\frac{3}{4}\right)^2\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\frac{3}{4}\right)^{2x}\)
=>6=2x
=>x=3
Sorry, cho mình làm lại:
\(\left(\left(\frac{3}{4}\right)^3\right)^2=\left(\frac{16}{9}\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\left(\frac{4}{3}\right)^2\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\frac{4}{3}\right)^{2x}\)
=>\(\left(\frac{3}{4}\right)^6=\frac{1}{\left(\frac{3}{4}\right)^{2x}}\)
=>\(\left(\frac{3}{4}\right)^6=\left(\frac{3}{4}\right)^{-2x}\)
=>6=-2x
=>-6=2x
=>x=-3
Giải phương trình:
\(\frac{x-4}{x\left(x+2\right)}\) - \(\frac{1}{x\left(x-2\right)}\) = \(\frac{-2}{\left(x+2\right)\left(x-2\right)}\)
\(\frac{1}{x\left(x+3\right)}\) + \(\frac{1}{\left(x+3\right)\left(x+6\right)}\) + \(\frac{1}{\left(x+6\right)\left(x+9\right)}\) + \(\frac{1}{\left(x+9\right)\left(x+12\right)}\) = \(\frac{1}{16}\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)
Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)
=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)
=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)
=> \(x^2-4x-2x+8-x-2=-2x\)
=> \(x^2-5x+6=0\)
=> \(\left(x-2\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)
=> x = 3 .
Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)
b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)
Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)
=> \(x\left(x+12\right)=192\)
=> \(x^2+12x-192=0\)
=> \(x^2+2x.6+36-228=0\)
=> \(\left(x+6\right)^2=288\)
=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )
Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)
Tìm x, biết:
a)\(x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\)
b)\(\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3};\)
c)\(\frac{2}{5}:x = \frac{1}{{16}}:0,125\)
d)\( - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\)
a)
\(\begin{array}{l}x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\\x = \frac{{ - 7}}{9}:\frac{{14}}{{27}}\\x = \frac{{ - 7}}{9}.\frac{{27}}{{14}}\\x = \frac{{ - 3}}{2}\end{array}\)
Vậy \(x = \frac{{ - 3}}{2}\).
b)
\(\begin{array}{l}\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right):\frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right).\frac{3}{2}\\x = \frac{{ - 5}}{6}\end{array}\)
Vậy \(x = \frac{{ - 5}}{6}\).
c)
\(\begin{array}{l}\frac{2}{5}:x = \frac{1}{{16}}:0,125\\\frac{2}{5}:x = \frac{1}{{16}}:\frac{1}{8}\\\frac{2}{5}:x = \frac{1}{{16}}.8\\\frac{2}{5}:x = \frac{1}{2}\\x = \frac{2}{5}:\frac{1}{2}\\x = \frac{2}{5}.2\\x = \frac{4}{5}\end{array}\)
Vậy \(x = \frac{4}{5}\)
d)
\(\begin{array}{l} - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\\ - \frac{5}{{12}}x = \frac{4}{6} - \frac{3}{6}\\ - \frac{5}{{12}}x = \frac{1}{6}\\x = \frac{1}{6}:\left( { - \frac{5}{{12}}} \right)\\x = \frac{1}{6}.\frac{{ - 12}}{5}\\x = \frac{{ - 2}}{5}\end{array}\)
Vậy \(x = \frac{{ - 2}}{5}\).
Chú ý: Khi trình bày lời giải bài tìm x, sau khi tính xong, ta phải kết luận.
tìm x
a, \(|x-7|=|9-234|\)
b,\(\left(\frac{x}{8}\right)^2+\frac{3}{16}=\frac{7}{16}\)
c,\(^{\left(8-3^2\right)^2+\left(x-39\right)^2=10}\)
a, |x-7|=|9-234|
=> |x-7|=|-225|
=> |x-7|=225
=>\(\orbr{\begin{cases}x-7=225\\x-7=-225\end{cases}}\)=>\(\orbr{\begin{cases}x=232\\x=-218\end{cases}}\)
b, \(\left(\frac{x}{8}\right)^2+\frac{3}{16}=\frac{7}{16}\)
=>\(\left(\frac{x}{8}\right)^2=\frac{7}{16}-\frac{3}{16}\)
=>\(\left(\frac{x}{8}\right)^2=\frac{1}{4}\)
=>\(\left(\frac{x}{8}\right)^2=\left(\frac{1}{2}\right)^2\)
=>\(\orbr{\begin{cases}\frac{x}{8}=\frac{1}{2}\\\frac{x}{8}=\frac{-1}{2}\end{cases}}\)=>\(\orbr{\begin{cases}x.2=8\\x.2=-8\end{cases}}\)=>\(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
c, (8-32)2+(x-39)2=10
=>(-1)2+(x-39)2=10
=>(x-39)2=10-1
=>(x-39)2=9
=>(x-39)2=32
=>\(\orbr{\begin{cases}x-39=3\\x-39=-3\end{cases}}\)=>\(\orbr{\begin{cases}x=42\\x=36\end{cases}}\)
a)\(\left|x-7\right|=\left|9-234\right|\)
\(\Rightarrow\left|x-7\right|=\left|-225\right|\)
\(\Rightarrow\left|x-7\right|=225\)
\(\Rightarrow x-7=\pm225\)
\(x-7=225\Rightarrow x=232\)\(x-7=-225\Rightarrow x=-218\)Vậy \(x\in\left\{232;-218\right\}\)
b)\(\left(\frac{x}{8}\right)^2+\frac{3}{16}=\frac{7}{16}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\frac{7}{16}-\frac{3}{16}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\frac{4}{16}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\pm\frac{1}{2}\right)^2\)
\(\Rightarrow\frac{x}{8}=\pm\frac{1}{2}\)
\(\Rightarrow\frac{x}{8}=\frac{1}{2}\Rightarrow\frac{x}{8}=\frac{4}{8}\Rightarrow x=4\)\(\Rightarrow\frac{x}{8}=\frac{-1}{2}\Rightarrow\frac{x}{8}=\frac{-4}{8}\Rightarrow x=-4\)Vậy \(x\in\left\{\pm4\right\}\)
c)\(\left(8-3^2\right)^2+\left(x-39\right)^2=10\)
\(\Rightarrow\left(8-9\right)^2+\left(x-39\right)^2=10\)
\(\Rightarrow\left(-1\right)^2+\left(x-39\right)^2=10\)
\(\Rightarrow1+\left(x-39\right)^2=10\)
\(\Rightarrow\left(x-39\right)^2=9\)
\(\Rightarrow\left(x-39\right)^2=\left(\pm3\right)^2\)
\(\Rightarrow x-39=\pm3\)
\(\Rightarrow x-39=3\Rightarrow x=42\)\(\Rightarrow x-39=-3\Rightarrow x=36\)Vậy \(x\in\left\{42;36\right\}\)
\(\frac{9}{16}\left(x-5\right)^2=\frac{25}{49}\left(x-3\right)^2\)giải pt