Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Hằng
Xem chi tiết
Trần Thị Hằng
29 tháng 11 2019 lúc 19:03
https://i.imgur.com/Pe6vPSJ.jpg
Khách vãng lai đã xóa
Đào Hiếu
Xem chi tiết
ngocanh nguyễn thị ngọc...
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Nguyễn Hoàng Việt
25 tháng 12 2016 lúc 17:30

đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)

\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)

Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)

Bây giờ thay t vào là ra

nguyễn mạnh tuấn
Xem chi tiết
Phương Anh
Xem chi tiết
Minh Thu
Xem chi tiết
Hương Trà
2 tháng 2 2016 lúc 17:24

Hỏi đáp Toán

Minh Thu
2 tháng 2 2016 lúc 17:29

tks cậu

Đào Lan Anh
2 tháng 2 2016 lúc 17:50

câu trả lời của mình cũng giống Hương Trà

AllesKlar
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2022 lúc 15:08

\(I=\int\limits^{\dfrac{\pi}{2}}_0\left(1+cosx+x.cosx\right)e^{sinx}dx=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right).cosx.e^{sinx}dx=I_1+I_2\)

Xét \(I_2\), đặt \(\left\{{}\begin{matrix}u=x+1\\dv=cosx.e^{sinx}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^{sinx}\end{matrix}\right.\)

\(\Rightarrow I_2=\left(x+1\right).e^{sinx}|^{\dfrac{\pi}{2}}_0-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx=\left(\dfrac{\pi}{2}+1\right)e-1-I_1\)

\(\Rightarrow I=I_1+\left(\dfrac{\pi}{2}+1\right)e-1-I_1=\left(\dfrac{\pi}{2}+1\right)e-1\)

Mai Anh Nguyễn
Xem chi tiết
Lương Đức Trọng
2 tháng 3 2016 lúc 11:27

Đặt $t=e^x$ thì $dt=e^xdx$ nên $dx=\dfrac{1}{t}dt$

\(I=\int_2^3 \dfrac{1}{t(t-1)}dt=\int_2^3 \left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\ln|t-1|\Big|_2^3-\ln |t|\Big|_2^3=2\ln2-\ln3\)