S=1/1.2+1/2.3+1/3.4+1/4.5+....+1/99.100
1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Tính tổng
S=1.2+2.3+3.4+4.5+...+99.100
S=1.2+2.3+...+(n-1).n. (n thuộc N sao)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
Bài 1 : Cm: ( n+1)^3 = n^3 +1 +3n(n+1). Áp dụng tính : S = 1.2+2.3+3.4+4.5+...+97.98+99.100
S=1+2+2^2+2^3+2^4+...+2^100
S=1.2+2.3+3.4+4.5+...+99.100+100.101
Q=1^2+2^2+3^2+...+100^2+101^2
S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰
2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)
= 2¹⁰¹ - 1
------------
S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 - 1.2.3 + 2
3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102
= 100.101.102
S = 100 . 101 . 102 : 3
= 343400
------------
Q = 1² + 2² + 3² + ... + 100² + 101²
= 101.102.(2.101 + 1) : 6
= 348551
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=?\)
Làm bậy, mà đúng
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+ … + \(\frac{1}{99.100}\)
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)-\(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+ … + \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(\frac{1}{1}\)- \(\frac{1}{100}\)
= \(\frac{99}{100}\)
1/1 . 2 + 1/ 2 . 3 + 1/ 3 . 4 + ... + 1/99 . 100
= 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 100/100 + -1/100
= 99/100
#Hoq chắc _ Baccanngon
Tính nhanh:
1)1.2+2.3+3.4+4.5+...+99.100
2) 1:20+1:44+1:77+1:119+1:170
Bài 1 :
Đặt A=1.2+2.3+3.4+4.5+.........+99.100
=> 3A=1.2.3+2.3.(4-1)+........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+........+99.100.101-98.99.100
3A=99.100.101
A=33.100.101
A=333300
Bài 2 :
1:20 + 1:44 + 1:77 + 1:119 + 1:170 = \(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+\frac{1}{119}+\frac{1}{170}=\frac{1}{10}=0,1\)
1)1.2+2.3+3.4+4.5+...+99.100
đặt 3D=1.2+2.3+3.4+...+99.100
=1.2.3+2.8.3+...+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5
=99.100.101
=999900
D=999900:3=333300
nếu đúng nhớ cảm ơn nhak. mình ko bít làm bài 2
\(\frac{1}{20}+\left(\frac{1}{44}+\frac{1}{77}\right)+\left(\frac{1}{119}+\frac{1}{170}\right)=\frac{1}{20}+\left(\frac{1}{11}.\frac{1}{4}+\frac{1}{11}.\frac{1}{7}\right)+\left(\frac{1}{17}.\frac{1}{7}+\frac{1}{17}.\frac{1}{10}\right)\)
= \(\frac{1}{20}+\frac{1}{11}.\left(\frac{1}{4}+\frac{1}{7}\right)+\frac{1}{17}.\left(\frac{1}{7}+\frac{1}{10}\right)=\frac{1}{20}+\frac{1}{11}.\frac{11}{28}+\frac{1}{17}.\frac{17}{70}=\frac{1}{20}+\frac{1}{28}+\frac{1}{70}\)
= \(\frac{1}{20}+\frac{1}{14}.\left(\frac{1}{2}+\frac{1}{5}\right)=\frac{1}{20}+\frac{1}{14}.\frac{7}{10}=\frac{1}{20}+\frac{1}{20}=\frac{2}{20}=0,1\)
Tính tổng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300
S=1.2+2.3+3.4+4.5+........+99.100
ta có :
3S= 1.2.3+2.3.3+3.4.3+4.5.3+....+99.100.3
=>3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=>3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
=>3S=99.100.101
=>S=99.100.101:3=333300
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)