viết pt (p) qua M(1:2:3), (p) vuông góc (Q):x+y-z=0 ,mp (p) cắt ox;oy tại 2 điểm A,B (xA>xB>0). sao cho diện tích tam giác OAB=40
giúp mình giải bài này với mn.
Câu 1: viết pt ( Oxz)
Câu2: viết pt (P) chứa Ox và vuông góc với (B) : 3x-y+2=0
Câu 3: viết phương trình (P) đi qua M( 1;-2;-3) và song song với ( A) -x+2y-3z+4
Câu 4: cho A( 2;-3;-1) và B( 0;-1;-5) viết pt (P) là mặt phẳng trung trực của đoạn thẳng AB
Câu 1: viết pt ( Oxz)
Câu2: viết pt (P) chứa Ox và vuông góc với (B) : 3x-y+2=0
Câu 3: viết phương trình (P) đi qua M( 1;-2;-3) và song song với ( A) -x+2y-3z+4
Câu 4: cho A( 2;-3;-1) và B( 0;-1;-5) viết pt (P) là mặt phẳng trung trực của đoạn thẳng AB
Cho mp (P): 3x – y – z + 2 = 0
a) Cho điểm C(-3; 2; 4). Tính d(C; (P))
b) Tìm điểm M thuộc Ox sao cho khoảng cách từ M đến O và đến mp(P) là bằng nhau
c) Viết pt mp (Q) song song với (P) và (Q) cách A(-1; 3;2) một khoảng bằng 5
d) Viết pt mp (Q) song song với (P) và (Q) cách B(0; 1; -4) một khoảng bằng khoảng cách từ B đến mp(P)
e) Viết pt mp(P) song song và cách mp(Q) một khoảng bằng 3
f) Cho (P1): 6x – 2y – 2z +9. Tính khoảng cách giữa (P) và (P1)
g) Cho (P2): 3x – y – z – 10 = 0. Viết pt mp song song và cách đều (P) và (P2)
1. Cho mp (P) x+y-z+1=0
(Q) x+y-3z+1=0. Lập pt đường thẳng d là giao tuyêna của (P) và (Q)
2. Cho mp (P): x+y-z+1=0
d: x=1+t
y=1-2t
z=t và M(1;-1;0)
a. Lập mp (Q) đi qua M và (Q) vuông góc với d
b. Lập pt hình chiếu d' của d trên mp (P).
Câu 1:
Gọi A là một điểm chung của \(\left(P\right)\) và \(\left(Q\right)\) \(\Rightarrow A\in d\), chọn \(A\left(0;-1;0\right)\)
Ta có: \(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-2;2;0\right)=-2\left(1;-1;0\right)\)
\(\Rightarrow d\) nhận \(\overrightarrow{u_d}=\left(1;-1;0\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=-1-t\\z=0\end{matrix}\right.\)
Câu 2:
a/ Do \(\left(Q\right)\perp d\Rightarrow\) (Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\overrightarrow{u_d}=\left(1;-2;1\right)\) là 1 vtpt
Phương trình (Q):
\(1\left(x-1\right)-2\left(y+1\right)+1\left(z-0\right)=0\Leftrightarrow x-2y+z-3=0\)
b/
Giao điểm B của \(d\) và (P):
\(1+t+1-2t-t+1=0\Rightarrow t=\frac{3}{2}\Rightarrow B\left(\frac{5}{2};-2;\frac{3}{2}\right)\)
Gọi (R) là mặt phẳng chứa d và vuông góc (P)
\(\left[\overrightarrow{u_d};\overrightarrow{n_{\left(P\right)}}\right]=\left(-1;-2;-3\right)\Rightarrow\left(R\right)\) nhận \(\overrightarrow{n_{\left(R\right)}}=\left(1;2;3\right)\) là 1 vtpt
\(\left[\overrightarrow{n_{\left(R\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-5;4;1\right)\) \(\Rightarrow\) hình chiếu d' của d lên (P) nhận \(\overrightarrow{u_{d'}}=\left(-5;4;1\right)\) là 1 vtcp
Phương trình \(d':\) \(\left\{{}\begin{matrix}x=\frac{5}{2}-5t\\y=-2+4t\\z=\frac{3}{2}+t\end{matrix}\right.\)
1)tìm m để đường thẳng d: \(y=2x-2m\) cắt đồ thị hàm số (C) :\(y=\frac{2x-m}{mx+1}\) tại hai điểm phân biệt A,B và cắt Ox,Oy tại M,N sao cho \(S_{OAB}=3S_{OMN}\)
2) Trong kgian tọa độ Oxyz có 2 đường thẳng có pt (d1) :\(\begin{cases}x=1-t\\y=t\\z=1+t\end{cases}\) và (d2) \(\begin{cases}x=3+4t\\y=5-2t\\z=4+t\end{cases}\) . Lập pt mp (P) đi qua (d1) và (P)//(d2)
Bài 1:
ĐKXĐ:.............
Phương trình hoành độ giao điểm của \((d)\cap (C)\):
\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)
Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$
Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)
\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)
\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)
Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)
Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)
\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)
Bài 2:
Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)
Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau
Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$
Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)
Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:
\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)
Cho đường thẳng d x+1/2=y-1/1=z/-1 d' x-1/-2=y+1/3=z-2/1 Và mp 2x+y-2z+5 =0. Viết pt đường thẳng đenta nằm trong mp cắt tất cả d và d'
1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là
2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la
3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là
4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng
5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng
6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là
7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là
8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\) là
9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là
10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB
11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là
12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?
13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ
14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là
15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là
16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0
17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)
18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là
19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?
20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C
A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1
C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1
1.
\(\left\{{}\begin{matrix}a+bi+a-bi=10\\\sqrt{a^2+b^2}=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a^2+b^2=169\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=5\\b=12\end{matrix}\right.\)
2.
\(\left(-2+i\right)^2+a\left(-2+i\right)+b=0\)
\(\Leftrightarrow3-4i-2a+ai+b=0\)
\(\Leftrightarrow\left(-2a+b+3\right)+\left(a-4\right)i=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b+3=0\\a-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)
3.
\(z^2+2z+8=0\Rightarrow\left[{}\begin{matrix}z_1=-1+7i\\z_2=-1-7i\end{matrix}\right.\)
\(\Rightarrow w=10+2\sqrt{7}i\)
4.
\(z^4-z^2-12=0\Rightarrow\left[{}\begin{matrix}z=4\\z=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}z=2\\z=-2\\z=i\sqrt{3}\\z=-i\sqrt{3}\end{matrix}\right.\) \(\Rightarrow T=4+2\sqrt{3}\)
5.
\(\overrightarrow{NM}=\left(3;-3;2\right)\Rightarrow MN=\sqrt{3^2+3^2+2^2}=\sqrt{22}\)
6.
\(\overrightarrow{AB}=\left(4;-2;6\right)\Rightarrow R=\frac{AB}{2}=\frac{1}{2}\sqrt{4^2+2^2+6^2}=\sqrt{14}\)
Gọi I là trung điểm AB \(\Rightarrow I\left(-1;0;-1\right)\)
Pt mặt cầu:
\(\left(x+1\right)^2+y^2+\left(z+1\right)^2=14\)
7.
\(R=d\left(I;Oy\right)=\sqrt{x_I^2+z_I^2}=5\)
Pt mặt cầu:
\(\left(x-3\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=25\)
8.
Đường thẳng d qua điểm \(M\left(0;-1;2\right)\) và nhận \(\overrightarrow{u}=\left(1;-1;-1\right)\) là 1 vtcp
\(\overrightarrow{MI}=\left(1;4;3\right)\)
\(\Rightarrow R=d\left(I;d\right)=\frac{\left|\left[\overrightarrow{u};\overrightarrow{MI}\right]\right|}{\left|\overrightarrow{u}\right|}=\frac{\left|\left(-1;4-;5\right)\right|}{\left|\left(1;-1;-1\right)\right|}=\sqrt{14}\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=14\)
1. Trong mp với hệ tọa độ Oxy, viết ft tổng quát của đường thẳng \(\Delta\) biết đường thẳng có hệ số góc là 5 và đi qua điểm N (0;2)
2. Viết ft đường thẳng \(\Delta\) biết
a. \(\Delta\) đi qua A (-1;4), vuông góc với d \(\begin{cases}x=1-t\\y=3+2t\end{cases}\)
b. \(\Delta\) cắt trục Ox, Oy tại A,B sao cho tam giác OAB vuông cân và \(\Delta\) đi qua M ( -1;1)
cho mp (P) x+y-z+3=0 và đường thẳng d:\(\begin{cases}x=3+2t\\y=-2-3t\\z=1-4t\end{cases}\) . Gọi I là giao điểm của d và (P). Viết pt đường thẳng \(\Delta\) nằm trg (P) sao cho \(\Delta\) vuông góc với d.Khoảng cách từ I đến \(\Delta\) bằng \(\sqrt{29}\)