1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là
2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la
3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là
4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng
5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng
6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là
7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là
8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\) là
9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là
10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB
11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là
12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?
13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ
14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là
15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là
16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0
17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)
18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là
19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?
20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C
A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1
C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1
1.
\(\left\{{}\begin{matrix}a+bi+a-bi=10\\\sqrt{a^2+b^2}=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a^2+b^2=169\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=5\\b=12\end{matrix}\right.\)
2.
\(\left(-2+i\right)^2+a\left(-2+i\right)+b=0\)
\(\Leftrightarrow3-4i-2a+ai+b=0\)
\(\Leftrightarrow\left(-2a+b+3\right)+\left(a-4\right)i=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b+3=0\\a-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)
3.
\(z^2+2z+8=0\Rightarrow\left[{}\begin{matrix}z_1=-1+7i\\z_2=-1-7i\end{matrix}\right.\)
\(\Rightarrow w=10+2\sqrt{7}i\)
4.
\(z^4-z^2-12=0\Rightarrow\left[{}\begin{matrix}z=4\\z=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}z=2\\z=-2\\z=i\sqrt{3}\\z=-i\sqrt{3}\end{matrix}\right.\) \(\Rightarrow T=4+2\sqrt{3}\)
5.
\(\overrightarrow{NM}=\left(3;-3;2\right)\Rightarrow MN=\sqrt{3^2+3^2+2^2}=\sqrt{22}\)
6.
\(\overrightarrow{AB}=\left(4;-2;6\right)\Rightarrow R=\frac{AB}{2}=\frac{1}{2}\sqrt{4^2+2^2+6^2}=\sqrt{14}\)
Gọi I là trung điểm AB \(\Rightarrow I\left(-1;0;-1\right)\)
Pt mặt cầu:
\(\left(x+1\right)^2+y^2+\left(z+1\right)^2=14\)
7.
\(R=d\left(I;Oy\right)=\sqrt{x_I^2+z_I^2}=5\)
Pt mặt cầu:
\(\left(x-3\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=25\)
8.
Đường thẳng d qua điểm \(M\left(0;-1;2\right)\) và nhận \(\overrightarrow{u}=\left(1;-1;-1\right)\) là 1 vtcp
\(\overrightarrow{MI}=\left(1;4;3\right)\)
\(\Rightarrow R=d\left(I;d\right)=\frac{\left|\left[\overrightarrow{u};\overrightarrow{MI}\right]\right|}{\left|\overrightarrow{u}\right|}=\frac{\left|\left(-1;4-;5\right)\right|}{\left|\left(1;-1;-1\right)\right|}=\sqrt{14}\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=14\)
9.
Đường thẳng d qua \(M\left(2;1;1\right)\) và nhận \(\overrightarrow{u}=\left(1;2;1\right)\) là 1 vtpt
\(\overrightarrow{IM}=\left(3;1;1\right)\) ; \(\left[\overrightarrow{u};\overrightarrow{IM}\right]=\left(-1;-2;5\right)\)
\(R=d\left(I;d\right)=\frac{\left|\left[\overrightarrow{u};\overrightarrow{IM}\right]\right|}{\left|\overrightarrow{u}\right|}=\sqrt{5}\)
Pt mặt cầu:
\(\left(x+1\right)^2+y^2+z^2=5\)
10.
\(\overrightarrow{AB}=\left(2;-4;-2\right)=2\left(1;-2;-1\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(2;0;1\right)\)
Phương trình mặt phẳng trung trực:
\(1\left(x-2\right)-2y-1\left(z-1\right)=0\)
\(\Leftrightarrow x-2y-z-1=0\)
11.
\(\overrightarrow{BA}=\left(6;-2;-2\right)=2\left(3;-1;-1\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(1;1;2\right)\)
Pt mp trung trực AB:
\(3\left(x-1\right)-\left(y-1\right)-\left(z-2\right)=0\)
\(\Leftrightarrow3x-y-z=0\)
12.
\(6x+3y-2z=0\)
13.
\(\overrightarrow{AB}=\left(1;3;-2\right)\)
Phương trình (P):
\(1\left(x-1\right)+3\left(y+2\right)-2\left(z-4\right)=0\)
\(\Leftrightarrow x+3y-2z+13=0\)
14.
\(\overrightarrow{BA}=\left(2;2;-1\right)\)
Pt (P):
\(2\left(x-2\right)+2\left(y-3\right)-1\left(z-1\right)=0\)
\(\Leftrightarrow2x+2y-z-9=0\)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)