1 tính D =\(\int_1^2\)( \(\frac{1}{x^2}+2x\))ds
2 biết \(\int_0^2\)f(x)dx=3. tính C=\(\int_0^2\)[4f(x)-3]dx
3 tính diện tích S của hình phẳng giới hạn bởi các đường y=e^x;y=2 và đường thảng x=1 bằng
4 một vật chuyển đông với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2,(m/s^2) . tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc
10 cho số phức z thỏa mãn /\(\overline{z}\) -(4+3i)/=2. Tập hợp biễu diễn sốc phức z là một đường tròn có tâm và bán kính lần lượt là
11 trong ko gian oxyz , cho mặt cầu S :x^2+(y-4)^2+(z-1)^2=25. tìm tâm I của mặt cầu (S)
12 viết pt mặt cầu S có tâm I(3;-3;1) và đi qua điểm A(5;-2;1)
13 trong ko gian oxyz , viết pt mặt cầu S tâm I(1;2;-1) và cắt mặt phẳng P:2x-y+2z-1=0 theo một đường tròn có bán kính bằng \(\sqrt{8}\) có phương trình là
14 trong ko gian oxyz, cho 2 điểm A(1;2;-1) vÀ B(-3;0;-1) . Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
15 trong ko gian oxyz, cho mặt phẳng P :2y-z+3=0 và điểm A(2;0;0). mặt phẳng (\(\alpha\)) đi qua A vuông góc với (P) cách gốc tọa độ O một khoảng bằng 4/3 và cắt tia OY ,OZ lần lượt tại các điểm B,C khác O . Phuong trình mặt phẳng (\(\alpha\)) là
16 trng ko gian oxyz , cho hai mặt phẳng P :2x+y-z-1=0 và Q:x-2y+z-5=0 . Khi đó , giao tuyến của (P) va (Q) có một veco chỉ phương là
17 trong ko gian oxyz, đường thẳng đi qua điểm A(-2;4;3) và vuông góc với mp 2x-3y+6z+19=0 có phương trình là
18 trong ko gian oxyz cho điểm A(-2;1;5) và mặt phẳng p:x+y-z+9=0 . tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)
19 trong ko gian oxyz cho điểm A(4;-3;2) . tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d:\(\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}\)là
1.
\(\int\limits^2_1\left(\frac{1}{x^2}+2x\right)dx=\left(-\frac{1}{x}+x^2\right)|^2_1=\frac{7}{2}\)
2.
\(C=4\int\limits^2_0f\left(x\right)dx-3\int\limits^2_0dx=4.3-3\left(2-0\right)=6\)
3.
Pt hoành độ giao điểm: \(e^x=2\Rightarrow x=ln2\)
Diện tích:
\(S=\int\limits^1_{ln2}\left(e^x-2\right)dx=\left(e^x-2x\right)|^1_{ln2}=e-2-\left(2-2ln2\right)=e+2ln2-4\)
4.
Vận tốc: \(v\left(t\right)=\int a\left(t\right)dt=\int\left(2t+t^2\right)dt=\frac{1}{3}t^3+t^2+C\)
\(v\left(0\right)=10\Rightarrow C=10\Rightarrow v\left(t\right)=\frac{1}{3}t^3+t^2+10\)
Quãng đường vật đi được sau 9s:
\(s=\int\limits^9_0v\left(t\right)dt=\int\limits^9_0\left(\frac{1}{3}t^3+t^2+10\right)dt=879.75\left(m\right)\)
10.
\(\left|x-yi-4-3i\right|=2\)
\(\Leftrightarrow\left|\left(x-4\right)-\left(y+3\right)i\right|=2\)
\(\Leftrightarrow\left(x-4\right)^2+\left(y+3\right)^2=4\)
Đường tròn tâm \(I\left(4;-3\right)\) bán kính \(R=2\)
11.
Mặt cầu có tâm \(I\left(0;4;1\right)\)
12.
\(\overrightarrow{IA}=\left(2;1;0\right)\Rightarrow R=IA=\sqrt{2^2+1^2}=\sqrt{5}\)
Pt mặt cầu:
\(\left(x-3\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=5\)
13.
\(d\left(I;\left(P\right)\right)=\frac{\left|2.1-2+2.\left(-1\right)-1\right|}{\sqrt{2^2+1^2+2^2}}=\frac{3}{3}=1\)
Áp dụng Pitago:
\(R=\sqrt{1^2+\sqrt{8}^2}=3\)
Phương trình mặt cầu:
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)
14.
\(\overrightarrow{BA}=\left(4;2;0\right)=2\left(2;1;0\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1;-1\right)\)
Mp trung trực AB vuông góc AB và qua M có pt:
\(2\left(x+1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y+1=0\)
15.
Gọi pt \(\left(Q\right)\) có dạng \(ax+by+cz+d=0\) (\(d\ne0\))
(Q) qua A nên: \(2a+d=0\) \(\Rightarrow d=-2a\)
\(\left(P\right)\perp\left(Q\right)\Leftrightarrow2b-c=0\) \(\Rightarrow c=2b\)
\(d\left(O;\left(Q\right)\right)=\frac{4}{3}\Leftrightarrow\frac{\left|d\right|}{\sqrt{a^2+b^2+c^2}}=\frac{4}{3}\Leftrightarrow9d^2=16\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow36a^2=16\left(a^2+b^2+4b^2\right)\) \(\Leftrightarrow20a^2=80b^2\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-2b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2;b=1;c=2;d=-4\\a=2;b=-1;c=-2;d=-4\end{matrix}\right.\) Có 2 mặt phẳng (Q) thỏa mãn: \(\left[{}\begin{matrix}2x+y+2z-4=0\\2x-y-2z-4=0\end{matrix}\right.\)
16.
\(\overrightarrow{n_{\left(P\right)}}=\left(2;1;-1\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(1;-2;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-1;-3;-5\right)\)
\(\Rightarrow\) Giao tuyến 2 mp nhận \(\left(-1;-3;-5\right)\) hoặc \(\left(1;3;5\right)\) là 1 vtcp
17.
Đường thẳng nhận \(\left(2;-3;6\right)\) là 1 vtcp
Pt tham số: \(\left\{{}\begin{matrix}x=-2+2t\\y=4-3t\\z=3+6t\end{matrix}\right.\)
Pt chính tắc: \(\frac{x+2}{2}=\frac{y-4}{-3}=\frac{z-3}{6}\)
18.
Pt tham số đường thẳng d qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=-2+t\\y=1+t\\z=5-t\end{matrix}\right.\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(-2+t+1+t-5+t+9=0\Rightarrow t=-1\) \(\Rightarrow H\left(-3;0;6\right)\)
19.
Pt mặt phẳng (P) qua A và vuông góc d:
\(3\left(x-4\right)+2\left(y+3\right)-z=0\)
\(\Leftrightarrow3x+2y-z-6=0\)
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t=0\Rightarrow t=\frac{5}{7}\) \(\Rightarrow H\left(\frac{1}{7};-\frac{4}{7};-\frac{5}{7}\right)\)