cho đường thẳng d có phương trình x - y = 0 và điểm M(2;1) : a) viết phương trình tổng quát của đường thẳng đối xứng với đường thẳng d qua điểm M ; b) tìm hình chiếu của M trên đường thẳng d .
cho đường thẳng (d) có phương trình x-y=0 và điểm M (2;1) . Viết phương trình tổng quát của đường thẳng đối xứng với đường thẳng (d) qua điểm M .
Lấy N (1;1) và P(0;0) thuộc (d)
Gọi N' ,P' là điểm đối xứng của N,P qua M
Ta có xN' = 2*2 -1= 3
yN'= 2*1-1 =1
xP'= 2*2-0=4
yP'= 2*1-0=2
==> N'(3;1), P'(4; 2)
(d') là đường thẳng đối xứng với M qua (d) ==> (d') đi qua N' , P'
==> Phương trình (d') \(\frac{x-3}{4-3}\)= \(\frac{y-1}{2-1}\)
==> x-y-2=0
Vậy (d') là x-y-2=0
Lấy N (1;1) và P(0;0) thuộc (d)
Gọi N' ,P' là điểm đối xứng của N,P qua M
Ta có xN' = 2*2 -1= 3
yN'= 2*1-1 =1
xP'= 2*2-0=4
yP'= 2*1-0=2
==> N'(3;1), P'(4; 2)
(d') là đường thẳng đối xứng với M qua (d) ==> (d') đi qua N' , P'
==> Phương trình (d') x−34−3= y−12−1
==> x-y-2=0
Vậy (d') là x-y-2=0
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
cho đường thẳng d có phương trình x - y = 0 và điểm M(2;1) : a) tìm hình chiếu của M trên đường thẳng d .
Trong mặt phẳng tọa độ Oxy cho điểm M(1,-1)và hai đường thẳng có phương trình (d1):x - y - 1 = 0 và (d2) 2x+y-5=0. Gọi A là giao điểm của 2 đường thẳng trên . Biết rằng có 2 đường thẳng (d) đi qua M cắt 2 đường thẳng trên tại B,C sao cho tam giác ABC có BC=3AB .Tìm phương trình đường thẳng của 2 đường thẳng đó
cho đường thẳng d có phương trình x - y = 0 và điểm M(2;1) : a) tìm hình chiếu của M trên đường thẳng d
cho đường thẳng d có phương trình x - y = 0 và điểm M(2;1) : a) tìm hình chiếu của M trên đường thẳng d
(d) có vector chỉ phương là (1, -1) và vector pháp tuyến là (-1,1).
Đường thẳng đi qua M(2,1) và vuông góc với (d) có dạng:
\(\frac{x-2}{-1}=\frac{y-1}{1}\), hay là: x + y = 3
Hình chiếu của M trên (d) chính là giao điểm của 2 đường thẳng:
x + y = 3
x - y = 0
Giải hệ ra ta có x = y = 3/2
Vậy Hình chiếu là (3/2 ; 3/2)
Viết pt đường thẳng (a) qua M và vuông góc với (d)
(a) cắt (d) tại đâu ta được hình chiếu H của M
cho đường thẳng d có phương trình x - y = 0 và điểm M(2;1) : a) tìm hình chiếu của M trên đường thẳng d
Cho 2 đường thẳng d1= 2x-y-2=0, d2= x+y+3=0 và M(3;0). Viết phương trình đường thẳng d đi qua M, cắt d1,d2 lând lượt tại 2 điểm A và B sao cho M là trung điểm
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
Trong Oxy, cho A(2;0) và đường thẳng d có phương trình x - y + 2 = 0. Gọi M(x;y) là điểm trên đường thẳng d sao cho chu vi tam giác OAM nhỏ nhất. Khi đó x + y bằng bao nhiêu?
Gọi B là điểm đối xứng A qua d, C là giao điểm của OB và d
\(\Rightarrow AM=BM\)
\(OA+OM+AM=OA+OM+BM\ge OA+OB\)
Dấu "=" xảy ra khi và chỉ khi O, M, B thẳng hàng hay M trùng C
Phương trình đường thẳng d' qua A và vuông góc d có dạng:
\(1\left(x-2\right)+1\left(y-0\right)=0\Leftrightarrow x+y-2=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow D\left(0;2\right)\)
D là trung điểm AB \(\Rightarrow B\left(-2;4\right)\)
Phương trình OB: \(2x+y=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x+y=0\\x-y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)