giải và biện luận phương trình (m là tham số) : 2mx-m2+m-2/x2 - 1=1
Cho phương trình (m+2)x2−2(m−1)x+3−m=0 (1); với m là tham số thực
1) Giải và biện luận phương trình đã cho theo tham số m
2) Tìm m để phương (1) có hai nghiệm thỏa mãn tổng hai nghiệm bằng tích hai nghiệm.
1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)
\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)
\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)
\(=4m^2-8m+4+4m^2-4m-24\)
\(=-12m-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-12m-20>0\)
\(\Leftrightarrow-12m>20\)
hay \(m< \dfrac{-5}{3}\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow-12m-20=0\)
\(\Leftrightarrow-12m=20\)
hay \(m=\dfrac{-5}{3}\)
Để phương trình vô nghiệm thì Δ<0
\(\Leftrightarrow-12m-20< 0\)
\(\Leftrightarrow-12m< 20\)
hay \(m>\dfrac{-5}{3}\)
2: ĐKXĐ: \(m\ne-2\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)
Ta có: \(x_1+x_2=x_1x_2\)
\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)
Suy ra: 2m-2=3-m
\(\Leftrightarrow2m+m=3+2\)
\(\Leftrightarrow3m=5\)
hay \(m=\dfrac{5}{3}\)(thỏa ĐK)
Cho phương trình : x2 – 2mx + m2 – m + 1 = 0 (1) (m là tham số)
a) Giải phương trình (1) với m = 2;
b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn: \(x^2_1+2mx_2=9\) .
a: Khi m=2 thì pt (1) trở thành:
\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
\(a\)) Thay \(:m=2\)
\(Pt\rightarrow x^2-4x+3=0\\ \rightarrow\left(x-1\right)\left(x-3\right)=0\\ \rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Để phương trình có nghiệm
\(\rightarrow m^2-m^2+m-1\ge0\\ \rightarrow\ge1\)
\(Vi-et:\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(x_1\)\(^2\)\(+2mx9=9\)
\(\rightarrow x_1\)\(^2+\left(x_1+x_2\right)x_2=9\)
\(\rightarrow x_1\)\(^2+x_1x_2+x_2\)\(^2=9\)
\(\rightarrow x_1\)\(^2+2x_1x_2+x_2\)\(^2-x_1x_2=9\)
\(\rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\rightarrow4m^2-m^2+m-1=9\\ \rightarrow3m^2+m-1=9\\ \rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-2\left(l\right)\end{matrix}\right.\)
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
Cho phương trình x 2 − 2 m x + m 2 − 1 = 0 1 , với m là tham số.
1) Giải phương trình (1) khi m= 2
2) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m. Gọi x 1 , x 2 là hai nghiệm của phương trình (1) lập phương trình bậc hai nhận x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 và x 2 3 − 2 m x 2 2 + m 2 x 2 − 2 là nghiệm.
1) Với m= 2 PT trở thành x 2 − 4 x + 3 = 0
Giải phương trình tìm được các nghiệm x = 1 ; x = 3.
2) Ta có Δ ' = m 2 − m 2 + 1 = 1 > 0 , ∀ m .
Do đó, phương trình (1) luôn có hai nghiệm phân biệt.
Từ giả thiết ta có x i 2 − 2 m x i + m 2 − 1 = 0 , i = 1 ; 2. x i 3 − 2 m x i 2 + m 2 x i − 2 = x i x i 2 − 2 m x i + m 2 − 1 + x i − 2 = x i − 2 , i = 1 ; 2.
Áp dụng định lí Viét cho phương trình (1) ta có x 1 + x 2 = 2 m ; x 1 . x 2 = m 2 − 1
Ta có
x 1 − 2 + x 2 − 2 = 2 m − 4 ; x 1 − 2 x 2 − 2 = x 1 x 2 − 2 x 1 + x 2 + 4 = m 2 − 1 − 4 m + 4 = m 2 − 4 m + 3
Vậy phương trình bậc hai nhận x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 , x 2 3 − 2 m x 2 2 + m 2 x 2 − 2 là nghiệm là x 2 − 2 m − 4 x + m 2 − 4 m + 3 = 0.
Cho hệ phương trình (m là tham số): 2mx+y=2 8x+my=m+2 Giải và biện luận hệ phương trình đã cho theo m Mn giúp em với ạ
2mx+y=2 và 8x+my=m+2
=>y=2-2mx và 8x+m(2-2mx)=m+2
=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)
=>2(m-2)(m+2)x=m-2 và y=-2mx+2
Nếu m=2 thì hệpt có vô số nghiệm
Nếu m=-2 thìhệ pt vn
Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)
Cho phương trình : 2 x 2 − 2 m x + m 2 − 2 = 0 1 , với m là tham số.
a) Giải phương trình (1) khi m= 2.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x 1 , x 2 sao cho biểu thức A = 2 x 1 x 2 − x 1 − x 2 − 4 đạt giá trị lớn nhất.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Giải và biện luận các phương trình sau theo tham số m
2 m x - 2 + 4 = 3 - m 2 x
Phương trình đã cho tương đương với phương trình
(m - 1)(m + 3)x = 4(m - 1)
Với m ≠ 1 và m ≠ -3 phương trình có nghiệm
Với m = 1 mọi số thực x đều là nghiệm của phương trình;
Với m = -3 phương trình vô nghiệm.
Câu 1: Cho hai đường thẳng (d):y=mx+1 và (d'):y=m2x +m+1, trong đó m là tham số. Tìm m để (d) và (d') song song với nhau
Câu 2: Cho phương trình: x2-2mx+m2+2m+2=0 (m là tham số). Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\dfrac{2}{x_1}+\dfrac{2}{x_2}=x_1+x_2\)