Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan thu trang
Xem chi tiết
Akai Haruma
8 tháng 2 2017 lúc 21:25

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

Akai Haruma
8 tháng 2 2017 lúc 23:38

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

Akai Haruma
9 tháng 2 2017 lúc 0:58

Câu 6)

\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)

Câu 8)

\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)

\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\) ta có:

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)

\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)

\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)

Trần Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:21

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:27

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:31

Từ phần này trở đi mới bắt đầu xài nguyên hàm từng phần:

g/ \(I=\int\left(x^2+2x-1\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=x^2+2x-1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+2\right)dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+2x-1\right)e^x-\int\left(2x+2\right)e^xdx\)

Xét \(J=\int\left(2x+2\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=2x+2\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow J=\left(2x+2\right)e^x-\int2e^xdx=\left(2x+2\right)e^x-2e^x+C=2x.e^x+C\)

\(\Rightarrow I=\left(x^2+2x-1\right)e^x-2x.e^x+C=\left(x^2-1\right)e^x+C\)

Khách vãng lai đã xóa
Phan thu trang
Xem chi tiết
Phan thu trang
20 tháng 1 2017 lúc 22:31

lm jup mk di m.n

Thái Nguyên
Xem chi tiết
Akai Haruma
28 tháng 12 2016 lúc 20:50

Câu 1:Gọi biểu thức là $A$. Đặt \(\sqrt{e^x-1}=t\)

\(\Rightarrow e^x=t^2+1\Rightarrow d(e^x)=d(t^2+1)=2tdt=e^xdx=(t^2+1)dx\)

\(\Rightarrow \int \frac{2t^2}{t^2+1}dt=\int \left (2-\frac{2}{t^2+1} \right)dt\)

Đặt \(t=\tan m\Rightarrow dt=\frac{dm}{\cos^2 m}\Rightarrow \int \frac{2dt}{t^2+1}=\int 2dm=2m\)

\(\Rightarrow A=2t-2m+c=2\sqrt{e^x-1}-2\tan ^{-1} (\sqrt{e^x-1})+c\)

Câu 2: Đặt \(x=\tan t\Rightarrow dx=\frac{dt}{\cos^2 t}, x^2+1=\frac{1}{\cos^2 t}\) với \(\frac{-\pi}{2} < t< \frac{\pi}{2}\)

Gọi biểu thức là $B$. Ta có

\(B=\int \frac{\cos t dt}{\sin ^4t}=\int \frac{d(\sin t)}{\sin^4 t}=\frac{-\sin ^{-3} t}{3}+c\) \(=-\frac{\sqrt{(x^2+1)^3}}{3x^3}+c\)

Lê Thanh Phương
Xem chi tiết
Võ Tân Hùng
21 tháng 3 2016 lúc 21:13

a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)"  ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)

Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)

                \(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)

 

b) Hàm dưới dấu nguyên hàm

\(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)

q=BCNN(2;3)=6

Ta thực hiện phép hữu tỉ hóa theo :

"Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"

=> \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)

Khi đó nguyên hàm đã cho trở thành :

\(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)

     \(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)

     \(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)

c) Hàm dưới dấu nguyên hàm có dạng :

\(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)

q=BCNN (3;6)=6

Ta thực hiện phép hữu tỉ hóa được

\(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)

Khi đó hàm dưới dấu nguyên hàm trở thành

\(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)

Do đó :

\(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)

    \(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)

Bắc Băng Dương
Xem chi tiết
Đỗ Hạnh Quyên
18 tháng 3 2016 lúc 21:49

a) Đặt \(1+\ln x=t\)  khi đó \(\frac{dx}{x}=dt\)  và do đó 

\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)

 

b) Đặt \(\sqrt[4]{e^x+1}=t\)  khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\)  , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\) 

Do đó :

\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)

    \(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)

 

c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :

\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)

 

Trương Thị Quỳnh
29 tháng 9 2017 lúc 15:49

C

Nguyễn Minh Ngọc
8 tháng 10 2017 lúc 19:49

8 hệ

Phạm Trần Phát
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 2024 lúc 20:25

\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)

\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)

\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)

d. \(I=\int lnxdx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)

\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)

e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)

f.

Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

g.

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)

Quyên Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2020 lúc 13:59

a.

\(I=\int\frac{\frac{1}{2}\left(2x-2\right)+7}{\sqrt{x^2-2x+10}}dx=\frac{1}{2}\int\frac{2x-2}{\sqrt{x^2-2x+10}}dx+7\int\frac{1}{\sqrt{x^2-2x+10}}dx=\frac{1}{2}I_1+7I_2\)

Xét \(I_1=\int\frac{2x-2}{\sqrt{x^2-2x+10}}dx=\int\frac{d\left(x^2-2x+10\right)}{\sqrt{x^2-2x+10}}=2\sqrt{x^2-2x+10}+C_1\)

Xét \(I_2=\int\frac{dx}{\sqrt{x^2-2x+10}}=\int\frac{dx}{\sqrt{\left(x-1\right)^2+9}}\)

Đặt

\(u=x-1+\sqrt{\left(x-1\right)^2+10}\Rightarrow du=\left(1+\frac{\left(x-1\right)}{\sqrt{\left(x-1\right)^2+10}}\right)dx=\frac{x-1+\sqrt{\left(x-1\right)^2+10}}{\sqrt{\left(x-1\right)^2+10}}dx\)

\(\Rightarrow du=\frac{u}{\sqrt{\left(x-1\right)^2+10}}dx\Rightarrow\frac{dx}{\sqrt{\left(x-1\right)^2+10}}=\frac{du}{u}\)

\(\Rightarrow I_2=\int\frac{du}{u}=ln\left|u\right|+C_2=ln\left|x-1+\sqrt{x^2-2x+10}\right|+C_2\)

\(\Rightarrow I=\sqrt{x^2-2x+10}+7ln\left|x-1+\sqrt{x^2-2x+10}\right|+C\)

Nguyễn Việt Lâm
26 tháng 8 2020 lúc 14:05

2.

\(I=\int\frac{\frac{1}{2}\left(2x+2\right)-1}{\sqrt{3-2x-x^2}}dx=\frac{1}{2}\int\frac{2x+2}{\sqrt{3-2x-x^2}}dx-\int\frac{1}{\sqrt{3-2x-x^2}}dx=\frac{1}{2}I_1-I_2\)

Xét \(I_1=\int\frac{2x+2}{\sqrt{3-2x-x^2}}dx=-\int\frac{d\left(3-2x-x^2\right)}{\sqrt{3-2x-x^2}}=-2\sqrt{3-2x-x^2}+C_1\)

Xét \(I_2=\int\frac{1}{\sqrt{3-2x-x^2}}dx=\int\frac{1}{\sqrt{4-\left(x+1\right)^2}}dx\)

Đặt \(x+1=2sinu\Rightarrow dx=2cosu.du\)

\(\Rightarrow I_2=\int\frac{2cosu.du}{2.cosu}=\int du=u+C_2=arcsin\left(\frac{x+1}{2}\right)+C_2\)

\(\Rightarrow I=-\sqrt{3-2x-x^2}-arcsin\left(\frac{x+1}{2}\right)+C\)

Nguyễn Việt Lâm
26 tháng 8 2020 lúc 14:38

c/

\(I=\int\frac{1-\sqrt{x}}{\sqrt{1-x}}dx\)

Đặt \(\sqrt{x}=sint\Rightarrow x=sin^2t\Rightarrow dx=2sint.cost.dt\)

\(\Rightarrow I=\int\frac{2sint.cost\left(1-sint\right)}{\sqrt{1-sin^2t}}dt=\int\frac{2sint.cost\left(1-sint\right)}{cost}dt=\int\left(2sint-2sin^2t\right)dt\)

\(=\int\left(2sint+cos2t-1\right)dt=-2cost+\frac{1}{2}sin2t-t+C\)

\(=-2\sqrt{1-sin^2t}+\frac{1}{2}sint\sqrt{1-sin^2t}-t+C\)

\(=-2\sqrt{1-x}+\frac{1}{2}\sqrt{x\left(1-x\right)}-arcsin\left(\sqrt{x}\right)+C\)

Phương Anh
Xem chi tiết