Cho hai số tự nhiên a, b thỏa mãn (a/4)+(b/3) = (a+b)/7. Tính a.b
Bài 3 : Tìm một số tự nhiên khi chia cho 3 dư 1 , khi chia cho 4 dư 2 , khi chia cho 5 dư 3 , khi chia cho 6 dư 4 và chia hết cho 11 .
a. Tìm số nhỏ nhất thỏa mãn tính chất trên .
b. Tìm dạng chung của các số có tính chất trên .
xin chào bạn Lương Thị Loan
chúng mik kết bạn nha
mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta xét hiệu:
\(\left(10a+50b\right)-\left(10a+b\right)=10a+50b-10-b\)
\(=49b⋮7\)
\(\Rightarrow\left(10a+50b\right)-\left(10a+b\right)\) \(\left(1\right)\)
Theo bài ra:\(a+5b⋮7\)
\(\Rightarrow10\left(a+5b\right)⋮7\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra:
\(10a+b⋮7\)
Vậy nếu \(a+5b\) chia hết cho 7 thì \(10a+b\) cũng chia hết cho 7.
cho a,b,c là các số tự nhiên thỏa mãn 1/a + 1/(a+b) + 1/(a+b+c) = 1 , tính a,b,c
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
Ta có :
\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)
\(=21a+7b=7\left(3a+b\right)\)
+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
Mà : 2 và 7 là hai số nguyên tố cùng nhau .
\(\Rightarrow10a+b⋮7\)
Vậy ...
bài 1:tìm số tự nhiên x;y thỏa mãn: 5x-2y=1
bài 2: cho a;b;c thỏa mãn 0<=a<=4;0<=b<=4;0<=c<=4 và a+b+c=6
tính GTLN của: P=a2+b2+c2+ab+ac+bc
cho 3 số tự nhiên a,b,c khác 0 và khác nhau thỏa mãn đk:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\).tính gtrị bthức:
p=\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
cho 3 số tự nhiên a,b,c khác 0 và khác nhau thỏa mãn đk:ab+c =ba+c =ca+b .tính gtrị bthức:
p=b+ca +a+cb +a+bc
Tìm 2 số tự nhiên a;b thỏa mãn điều kiện a+2b=48 và (a;b)+3[a;b]=114
Cho 3 số tự nhiên a,b,c thỏa mãn:
ab=bc=ca
Chứng minh rằng:a=b=c
\(2^3=3^4=4^2\)
Thế là vô lý rồi, phép trên ko = nhau.
Lê Hà Phương a; b; c phải thỏa mãn ab = bc = ca