Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Linh

Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7

Isolde Moria
11 tháng 11 2016 lúc 17:18

Ta có :

\(a+5b⋮7\)

\(\Leftrightarrow21a-a+5b-7b⋮7\)

\(\Leftrightarrow20a-2b⋮7\)

\(\Leftrightarrow2\left(10a-b\right)⋮7\)

Mà ( 2 ; 7 ) = 1

=> 10a - b chia hết cho 7

** Sai đề nhé bạn

Trần Minh An
8 tháng 4 2017 lúc 19:36

Ta xét hiệu:

(10a + 50b) - (10a + b) = 10a + 50b - 10a - b

= 49b \(⋮\) 7

\(\Rightarrow\) (10a + 50b) - (10a + b) (1)

Theo bài ra: a + 5b \(⋮\) 7

\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)

Từ (1) và (2), suy ra:

10a + b \(⋮\) 7

Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7

Trần Minh Hoàng
8 tháng 4 2017 lúc 19:50

Ta xét hiệu:

\(\left(10a+50b\right)-\left(10a+b\right)=10a+50b-10-b\)

\(=49b⋮7\)

\(\Rightarrow\left(10a+50b\right)-\left(10a+b\right)\) \(\left(1\right)\)

Theo bài ra:\(a+5b⋮7\)

\(\Rightarrow10\left(a+5b\right)⋮7\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\), suy ra:

\(10a+b⋮7\)

Vậy nếu \(a+5b\) chia hết cho 7 thì \(10a+b\) cũng chia hết cho 7.


Các câu hỏi tương tự
Nguyễn Phương Linh
Xem chi tiết
Ngô Thị Thảo May
Xem chi tiết
Bée Dâu
Xem chi tiết
Nguyễn Thị Mai Phương
Xem chi tiết
Nguyễn Minh Trí
Xem chi tiết
Namitoyoki Love
Xem chi tiết
Bée Dâu
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Minamoto Shizuka
Xem chi tiết