Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta xét hiệu:
\(\left(10a+50b\right)-\left(10a+b\right)=10a+50b-10-b\)
\(=49b⋮7\)
\(\Rightarrow\left(10a+50b\right)-\left(10a+b\right)\) \(\left(1\right)\)
Theo bài ra:\(a+5b⋮7\)
\(\Rightarrow10\left(a+5b\right)⋮7\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra:
\(10a+b⋮7\)
Vậy nếu \(a+5b\) chia hết cho 7 thì \(10a+b\) cũng chia hết cho 7.