A= 22013 + 22014 + 22015 .chứng tỏ A chia hết cho 28
Chứng tỏ rắng 42010+22014 chia hết cho 10
Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.
Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\) (*)
Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).
Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:
\(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\) (1)
Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\). (**)
Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).
Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\) thì
\(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)
Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\) (2)
Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)
Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)
Cho S = 1 - 2 + 22 -23 +...+22012 - 22013 . Tính 3S - 22014
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
tìm x:
2x + 1 . 22014= 22015
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
B = 22018 - 22017 - 22016 - 22015 - 22014
\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)
\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)
\(=>2B+B=2^{2019}-2^{2014}\)
\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)
Tính giá trị của biểu thức sau :
B=22014-22013-22012-....-23-22-3
Chứng minh rằng: 12015 + 22015 + ..... + 20152015 chia hết cho 1 + 2 + ... + 2015.
Cho A = 2^30 + 2^29 + 2^28
Chứng tỏ A chia hết cho 7.
Cho A = 2^30 + 2^29 + 2^28
Chứng tỏ A chia hết cho 7.
a, Cho tổng A= 428+428+430 chứng tỏ rằng A chia hết cho 28
b, Tính tổng S = 22012-22011-........-2-1
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120