2/x=3/y xy=96
lời nhận like hiện
Thực hiện phép tính sau:
d) \(\left(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^2-x^2y+xy^2-y^3}\right)\)
\(=\left(\dfrac{x\left(x+y\right)}{x^2\left(x+y\right)+y^2\left(x+y\right)}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^2\left(x-y\right)+y^2\left(x-y\right)}\right)\)
\(=\dfrac{x+y}{x^2+y^2}:\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)
\(=\dfrac{x+y}{x^2+y^2}:\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)
\(=\dfrac{x+y}{x^2+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x-y\right)^2}\)
\(=\dfrac{x+y}{x-y}\)
Thực hiện phép tính
\(a)\dfrac{{x + y}}{{y - x}}:\dfrac{{{x^2} + xy}}{{3{{\rm{x}}^2} - 3{y^2}}}\)
\(b)\dfrac{{{x^3} + {y^3}}}{{x - y}}:\left( {{x^2} - xy + {y^2}} \right)\)
\(\begin{array}{l}a)\dfrac{{x + y}}{{y - x}}:\dfrac{{{x^2} + xy}}{{3{{\rm{x}}^2} - 3{y^2}}} = \dfrac{{x + y}}{{y - x}}.\dfrac{{3{{\rm{x}}^2} - 3{y^2}}}{{{x^2} + xy}}\\ = \dfrac{{\left( {x + y} \right).3\left( {{x^2} - {y^2}} \right)}}{{\left( {y - x} \right).x.\left( {x + y} \right)}}\\ = \dfrac{{\left( {x + y} \right).3\left( {x - y} \right)\left( {x + y} \right)}}{{ - \left( {x - y} \right).x.\left( {x + y} \right)}} = \dfrac{{ - 3\left( {x + y} \right)}}{x}\end{array}\)
\(\begin{array}{l}b)\dfrac{{{x^3} + {y^3}}}{{x - y}}:\left( {{x^2} - xy + {y^2}} \right)\\ = \dfrac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{x - y}}.\dfrac{1}{{{x^2} - xy + {y^2}}} = \dfrac{{x + y}}{{x - y}}\end{array}\)
Cho hai đa thức:
\(A = 5{x^2}y + 5x - 3\) và \(B = xy - 4{x^2}y + 5x - 1\).
Thực hiện phép cộng hai đa thức A và B bằng cách tiến hành các bước sau:
- Lập tổng \(A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right).\)
- Bỏ dấu ngoặc và thu gọn đa thức nhận được.
\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)
Thực hiện phép trừ hai đa thức A và B bằng cách lập hiệu
\(A - B = \left( {5{x^2}y + 5x - 3} \right) - \left( {xy - 4{x^2}y + 5x - 1} \right)\), bỏ dấu ngoặc rồi thu gọn đa thức nhận được.
\(\begin{array}{l}A - B = \left( {5{x^2}y + 5x - 3} \right) - \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 - xy + 4{x^2}y - 5x + 1\\ = \left( {5{x^2}y + 4{x^2}y} \right) - xy + \left( {5x + 5x} \right) + \left( { - 3 + 1} \right)\\ = 9{x^2}y - xy + 10x - 2\end{array}\)
thực hiện phép tính sau\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
MTC = (x - y)(x2 + xy + y2)
\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
1/x-y-3xy/x^3-y^3+x-y/x^2+xy+y^2
=1/x-y+-3xy/(x-y)(x^2+xy+y^2)+x-y/x^2+xy+y^2
=x^2+xy+y^2/(x-y)(x^2+xy+y^2)+-3xy/(x-y)(x^2+xy+y^2)+x^2-2xy+y^2/(x-y)(x^2+xy+y^2)
=x^2+xy+y^2-3xy+x^2-2xy-y^2/(x-y)(x^2+xy+y^2)
=2x^2-5xy/(x-y)(x^2+xy+y^2)
MTC = (x - y)(x2 + xy + y2)
\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
làm tính trừ \(\dfrac{5x+y}{xy-5x^2}\)-\(\dfrac{35x^2+8xy+y^2}{xy^225x^3}\)
thực hiện phép tính \(\dfrac{x^3+6x^2-25}{x^3+3x^2-10x}\)-\(\dfrac{x+5}{2x-x^2}\)
b: \(=\dfrac{x^3+6x^2-25}{x\left(x+5\right)\left(x-2\right)}+\dfrac{x+5}{x\left(x-2\right)}\)
\(=\dfrac{x^3+6x^2-25+x^2+10x+25}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x^3+7x^2+10x}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
3/1-2x=-5/3x-2. X/-3=y/5;xy=-5/27. Tim xy .ai đúng cho 2 like
3(3x-2)=-5(1-2x)
9x-6 =-5+10x
-6+5 =10x-9x
x =-1
Đặt X/-3=Y/5=k
=>X=-3k
Y=5k
xy=-5/27<=>-3k.5k=27
=>k=-1.8
x=-1.8 .-3=5.4
y=-1.8 .5=-9
Thực hiện phép tính ;
a,\(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\) b, \(\dfrac{x+3}{x-2}+\dfrac{4+x}{2-x}\)
\(a,=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{x-y}{xy\left(y-x\right)}=\dfrac{-1}{xy}\\ b,=\dfrac{x+3-x-4}{x-2}=\dfrac{-1}{x-2}\)