Tìm x, y ϵ Z.
b) \(\dfrac{1}{x}-\dfrac{y}{2}=\dfrac{1}{4}\)
d) (3x-5)(2x+1)=12
5, Tìm x, y ϵ Z, sao cho:
a) y = \(\dfrac{6x-4}{2x+3}\) b) \(\dfrac{1}{x}-\dfrac{y}{2}=\dfrac{1}{4}\)
c) xy-3x+2y=5 d) (3x-5)(2x+1)=12
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
8. Tìm x,y ϵ Z.
c) \(\dfrac{x}{2}+\dfrac{1}{y}=\dfrac{1}{3}\) d) 4x-5⋮2x+1
c, x/2+1/y=1/3 (x,y∈Z)
⇒1/y=1/3-x/2
⇒1/y=2-3x/6
⇒y(2-3x)=6
⇒y∈Ư(6)∈{1;-1;2;-2;3;-3;6;-6}
y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2-3x | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
3x | -4 | 8 | -1 | 5 | 0 | 4 | 1 | 3 |
x | -4/3 (loại) | 8/3(loại) | -1/3(loại) | 5/3(loại) | 0 | 4/3(loại) | 1/3(loại) | 1
|
Vậy các cặp (x;y) thỏa mãn pt trên là (0;3);(1;-6)
d, 4x-5⋮2x+1 (x∈Z)
⇒4x-5-2(2x+1)⋮2x+1
⇒-7⋮2x+1
⇒2x+1∈Ư(-7)∈{1;-1;7;-7}
Ta lập bảng
2x+1 | 1 | -1 | 7 | -7 |
2x | 0 | -2 | 6 | -8 |
x | 0 | 1 | 3 | -4 |
Vậy với x=-4;x=0;x=1;x=3 thì thỏa mãn pt trên
12) Tìm x, y ϵ Z, sao cho:
a) \(\dfrac{x}{2}\) - \(\dfrac{1}{y}\)= \(\dfrac{1}{3}\)
b) \(\dfrac{4}{x}\) + \(\dfrac{y}{2}\) = \(\dfrac{-1}{4}\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
\(a.\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
\(b.\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
a.\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
\(ĐK:y\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\dfrac{12+\left(y^2-4\right)}{\left(y-2\right)\left(y+2\right)}\)
\(\Leftrightarrow\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+\left(y^2-4\right)\)
\(\Leftrightarrow y^2+2y-y-2-5y+10=12+y^2-4\)
\(\Leftrightarrow-4y=0\)
\(\Leftrightarrow y=0\left(tm\right)\)
Vậy \(S=\left\{0\right\}\)
b.\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
\(ĐK:x\ne1\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)
\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)-3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\left(x^2+x+1\right)-3x^2=2x\left(x-1\right)\)
\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)
\(\Leftrightarrow4x^2-3x-1=0\)
\(\Leftrightarrow4x^2-4x+x-1=0\)
\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4}\right\}\)
Bài 1: tìm đạo hàm của các hàm số sau
1. y=6x2 -\(\dfrac{4}{x}\)+1
2. y=\(\dfrac{2x+1}{-x+1}\)
3. y= \(\sqrt{x^2-3x+4}\)
4. y=\(\dfrac{\left(x^2-1\right)\left(x+3\right)}{x-4}\)
5. y=\(\dfrac{1}{2x^2-3x+5}\)
6. y=(x+1)\(\sqrt{x^2-1}\)
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
tìm x, y ϵ Z
\(\dfrac{x}{-3}\)=\(\dfrac{9}{4}\) và 2x+y=-4
4 tìm 2 stn (a,b)=1 bt
\(\dfrac{5a+7b}{6a+5b}\)=\(\dfrac{29}{28}\)
tìm điều kiện bài toán:
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt{2x-1}}{x^2-3x+2}\)
b) \(y=\dfrac{1}{x^2-1}-\sqrt{7-2x}\)
c) \(y=\dfrac{2}{x}+\dfrac{3}{4-2x+x^2}\)
d) \(y=\sqrt{25-x^2}-2\sqrt{x}+3\)
Lời giải:
a.
\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)
$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix}
x^2-1=(x-1)(x+1)\neq 0\\
7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\neq \pm 1\\
x\leq \frac{7}{2}\end{matrix}\right.\)
c.
\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)
d.
\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)
Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)
\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)
a) \(x\ge\dfrac{1}{2};x\ne1;x\ne2\)
b) \(x\le\dfrac{7}{2};x\ne\pm1\)
c) \(x\ne0\)
d) \(0\le x\le5\)