Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:28

a) Để y nguyên thì \(6x-4⋮2x+3\)

\(\Leftrightarrow-13⋮2x+3\)

\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)

\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)

hay \(x\in\left\{-1;-2;5;-8\right\}\)

Lê Hoàng Khánh
Xem chi tiết
Attems
21 tháng 7 2021 lúc 22:39

c, x/2+1/y=1/3         (x,y∈Z)

⇒1/y=1/3-x/2

⇒1/y=2-3x/6

⇒y(2-3x)=6

⇒y∈Ư(6)∈{1;-1;2;-2;3;-3;6;-6}

y1-12-23-36-6
2-3x6-63-32-21-1
3x-48-150413
x-4/3 (loại)8/3(loại)-1/3(loại)5/3(loại)04/3(loại)1/3(loại)

1

 

Vậy các cặp (x;y) thỏa mãn pt trên là (0;3);(1;-6)

Attems
21 tháng 7 2021 lúc 22:48

d, 4x-5⋮2x+1     (x∈Z)

⇒4x-5-2(2x+1)⋮2x+1

⇒-7⋮2x+1

⇒2x+1∈Ư(-7)∈{1;-1;7;-7}

Ta lập bảng

2x+11-17-7
2x0-26-8
x013-4

Vậy với x=-4;x=0;x=1;x=3 thì thỏa mãn pt trên

Lê Hoàng Khánh
Xem chi tiết
Hồ Xuân Hùng
Xem chi tiết
Nguyễn Đức Trí
25 tháng 7 2023 lúc 10:37

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

Nguyễn Đức Trí
25 tháng 7 2023 lúc 10:44

Bạn xem lại đề 2, phần mẫu của N

Hồ Xuân Hùng
25 tháng 7 2023 lúc 21:25

@Nguyễn Đức Trí: Đề bài nó như vậy mà

Mymy V
Xem chi tiết
✎﹏トラン⋮ Hannie ッ
16 tháng 4 2022 lúc 16:02

a.\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)

\(ĐK:y\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\dfrac{12+\left(y^2-4\right)}{\left(y-2\right)\left(y+2\right)}\)

\(\Leftrightarrow\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+\left(y^2-4\right)\)

\(\Leftrightarrow y^2+2y-y-2-5y+10=12+y^2-4\)

\(\Leftrightarrow-4y=0\)

\(\Leftrightarrow y=0\left(tm\right)\)

Vậy \(S=\left\{0\right\}\)

✎﹏トラン⋮ Hannie ッ
16 tháng 4 2022 lúc 16:05

b.\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(ĐK:x\ne1\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)-3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow\left(x^2+x+1\right)-3x^2=2x\left(x-1\right)\)

\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)

\(\Leftrightarrow4x^2-3x-1=0\)

\(\Leftrightarrow4x^2-4x+x-1=0\)

\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4}\right\}\)

 

 

Minh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 21:41

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

Trần Tiến Đạt
Xem chi tiết
OH-YEAH^^
8 tháng 6 2021 lúc 20:13

a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)

\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)

\(2x+1=21\)

\(2x=21-1\)

\(2x=20\)

\(x=10\)

 

Nguyễn Thu Uyên
Xem chi tiết
Phượng Dương Thị
Xem chi tiết
Akai Haruma
11 tháng 7 2023 lúc 23:48

Lời giải:
a.

\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)

$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix} x^2-1=(x-1)(x+1)\neq 0\\ 7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq \pm 1\\ x\leq \frac{7}{2}\end{matrix}\right.\)

c.

\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)

d.

\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)

 

Nguyễn Đức Trí
11 tháng 7 2023 lúc 22:12

a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)

Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)

Nguyễn Đức Trí
11 tháng 7 2023 lúc 23:49

a) \(x\ge\dfrac{1}{2};x\ne1;x\ne2\)

b) \(x\le\dfrac{7}{2};x\ne\pm1\)

c) \(x\ne0\)

d) \(0\le x\le5\)