so sánh 5-2 căn 7 và 3 -căn 10
So sánh A.7 + 2 căn 2 ... 10
B. Căn 2 + căn 3 ... 3
a: 2căn 2=căn 8<căn 9=3
=>\(2\sqrt{2}+7< 3+7=10\)
b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)
\(3^2=9=5+4\)
mà \(2\sqrt{6}>4\)
nên \(\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)
=>\(\sqrt{3}+\sqrt{2}>3\)
Bài1: Rút gọn biểu thức A, A= ( căn 2/3 + căn 50/3 - căn 24) . căn 6 B, B= căn 14 - căn 7 / căn 2-1 + căn 15 - căn 5 / căn 3 -1 ) : 1/ căn 7 - căn 5 b, So sánh A và B Bài 2: Giải các phương trình sau a, căn 3x -5 căn 12x + 7 căn 27x =12 b, x / 1+ căn 1+x -1
so sánh 3 căn 7 và 4 căn 5
Lời giải:
$3\sqrt{7}=\sqrt{3^2.7}=\sqrt{63}$
$4\sqrt{5}=\sqrt{4^2.5}=\sqrt{80}$
Mà $63<80$ nên $3\sqrt{7}< 4\sqrt{5}$
1/Đưa thừa số ra ngoài dấu căn: 3 căn8 - 5 căn 18 2/Đưa thừa số vào dấu căn So sánh: 7 căn3 và căn 141 3/ khử mẫu của biểu thức (bằng 2 cách) Căn 5 phần27 Căn 11 phần 64
so sánh 5 căn 2 +căn 75 và 5 căn 3+căn 50
\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)
\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)
\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)
so sánh căn 3 + 5 và căn 2 + căn 11
Lời giải:
$\sqrt{3}+5> \sqrt{1}+5=6$
$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$
$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$
căn 5 + căn 7 và căn 12 hãy so sánh
\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}>12=\left(\sqrt{12}\right)^2\\ \Rightarrow\sqrt{5}+\sqrt{7}>\sqrt{12}\)
\(\sqrt{5}+\sqrt{7}\) và \(\sqrt{12}\)
Giả sử: \(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
=> \(\left(\sqrt{5}+\sqrt{7}\right)^2>\left(\sqrt{12}\right)^2\)
<=> \(5+2\sqrt{35}+7>12\)
<=> \(12+2\sqrt{35}>12\) (thỏa mãn giả sử)
Vậy \(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
So sánh
1. căn 11 + căn 5 và 4
2. 3 căn 3 và căn 19 - căn 2
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
1. So sánh 1+căn 15 và căn 24
2.Giải phương trình
a. x^3-5x^2=2x^2-10
b.3x-7 căn x= 20
c.1+ căn 3x > 3
d. x^2 - x căn x - 5x - căn x - 6 = 0
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }