Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh
Xem chi tiết
Linh Hannie
Xem chi tiết
bui trong thanh nam
Xem chi tiết
Girl Personality
Xem chi tiết
Nguyễn Tũn
7 tháng 8 2018 lúc 16:38

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Nguyễn Huy Tú
18 tháng 1 2021 lúc 22:28

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

Khách vãng lai đã xóa
Yeutoanhoc
28 tháng 6 2021 lúc 16:43

`a^2+b^2+c^2+3=2(a+b+c)`

`<=>a^2+b^2+c^2+3-2a-2b-2c=0`

`<=>a^2-2a+1+b^2-2b+1+c^2-2c+1=0`

`<=>(a-1)^2+(b-1)^2+(c-1)^2=0`

`VT>=0`

Dấu "=" `<=>a=b=c=1`

Áp dụng bđt cosi ta có:

`a^2+b^2>=2ab`

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

`=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`=>a^2+b^2+c^2>=ab+bc+ca`

`=>(a+b+c)^2>=3(ab+bc+ca)`

Dấu '=" `<=>a=b=c`

3 không rõ đề

Tokisaki Kurumi
Xem chi tiết
Phạm Nguyễn Minh Vương
25 tháng 6 2017 lúc 21:30

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

Tokisaki Kurumi
25 tháng 6 2017 lúc 21:35

hey you, còn câu b,c?

le thai ha
25 tháng 6 2017 lúc 21:36

ở đây có ai thích sơn tùng không ?

Đỗ Trần Khánh Linh
Xem chi tiết
Đoàn Đức Hà
7 tháng 10 2021 lúc 8:53

A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)

\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)

suy ra đpcm. 

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)

suy ra đpcm. 

B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)

\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)

suy ra đpcm. 

Khách vãng lai đã xóa
♥ Dora Tora ♥
Xem chi tiết
thỏ
14 tháng 8 2018 lúc 11:10

a, a2+b2+c2+3=2(a+b+c)

a2+b2+c2+3-2a-2b-2c=0

(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

(a-1)2+(b-1)2+(c-1)2=0

mà (a-1)2+(b-1)2+(c-1)2\(\ge\)0

=>\(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

=> a=b=c=1

Nguyễn Thị Phương Uyên
Xem chi tiết
Nguyễn Thị Phương Uyên
17 tháng 9 2017 lúc 10:31

CÁC CẬU ƠI GIÚP MIK VS!!!!!!

Diệu Linh Trần Thị
Xem chi tiết
Nguyễn Phương HÀ
10 tháng 8 2016 lúc 14:46

Hỏi đáp Toán

Lightning Farron
10 tháng 8 2016 lúc 14:48

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 14:52

a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)

\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)

c) Giải tương tự câu b) , bắt đầu từ (1)

Trần Thị Bích Ngọc
Xem chi tiết