Trên mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A (a; 0) và B(0; b) thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O, bán kính bằng 1. Khi đó AB có độ dài nhỏ nhất bằng ?
Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
Gọi tiếp điểm của AB và đường tròn tâm O, bán kính 1 là M, ta có: OM ⊥ AB.
ΔOAB vuông tại O, có OM là đường cao nên MA.MB = MO2 = 1 (hằng số)
Áp dụng bất đẳng thức Cô-si ta có:
MA + MB ≥ 2√MA.MB = 2. √1 = 2
Dấu « = » xảy ra khi MA = MB = 1.
Khi đó OA = √(MA2 + MO2) = √2 ; OB = √(OM2 + MB2) = √2.
Mà A, B nằm trên tia Ox và Oy nên A(√2; 0); B(0; √2)
Vậy tọa độ là A(√2, 0) và B(0, √2).
Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất
Ta có : HA.HB=OH²=1 (không đổi).
và AB=HA+HB ≥ 2√(HA.HB) = 2.√OH² = 2.
-> AB ≥ 2.
Vậy AB có độ dài nhỏ nhất là 2 khi HA=HB
Khi đó tg OHB và OHA vuông cân và có cạnh góc vuông = 1.
suy ra OA = OB =√2.
Vậy đoạn AB nhỏ nhất khi A(√2;0) B(0;√2).
Trong mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
Ta có : HA.HB=OH²=1 (không đổi).
và AB=HA+HB ≥ 2√(HA.HB) = 2.√OH² = 2.
-> AB ≥ 2.
Vậy AB có độ dài nhỏ nhất là 2 khi HA=HB
Khi đó tg OHB và OHA vuông cân và có cạnh góc vuông = 1.
suy ra OA = OB =√2.
Vậy đoạn AB nhỏ nhất khi A(√2;0) B(0;√2).
tick cho mk nha
Trong mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
Hướng dẫn.
Trên mặt phẳng tọa độ Oxy, vẽ điểm A có tọa độ (1;1). Đường tròn tâm O với bán kinh Oa cắt các tia Ox, Oy theo thứ tự B và C. Tìm tọa độ của các điểm B, C.
Lời giải:
Áp dụng định lý Pitago: $OA=\sqrt{1^2+1^2}=\sqrt{2}$
Vì $B\in Ox$ nên tọa độ của $B$ có dạng $(b,0)$
Vì $B$ thuộc đường tròn tâm $O$ bán kính $OA=\sqrt{2}$ nên $|x_B|=OB=OA=\sqrt{2}$. Vậy $B(\pm \sqrt{2},0)$
$C\in Oy$ nên $C$ có tọa độ $(0,c)$
$C$ thuộc đường tròn đường kính $OA$ nên:
$|y_C|=OC=OA=\sqrt{2}$. Vậy $C(0, \pm \sqrt{2})$
Trong không gian với hệ tọa độ Oxy, viết phương trình mặt phẳng (P) chứa điểm M(1;3; –2), cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho O A 1 = O B 2 = O C 4
A. x + 2y + 4z + 1 = 0
B. 4x + 2y + z – 8 = 0
C. 2x – y – z – 1 = 0
D. 4x + 2y + z + 1 = 0
Đáp án B
Phương pháp :
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a;b;c>0) => OA = a; OB = b; OC = c
Viết phương trình mặt phẳng (P): x a + y b + z c = 1
Cách giải :
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a;b;c>0) => OA = a; OB = b; OC = c
O A 1 = O B 2 = O C 4 <=>
Khi đó phương trình mặt phẳng (P) là: x a + y 2 a + z 4 a = 1
Vậy phương trình mặt phẳng (P) là :
x 2 + y 4 + z 8 = 1 <=> 4x + 2y + z – 8 = 0
trên mặt phẳng tọa độ Oxy vẽ điểm A có tọa độ (1;1)đường tròn tâm A bán kính oa cát các tia ox oy theo thứ tự là b, c tìm tọa độ của b và c3 like nha
Trong mặt phẳng tọa độ oxy,viết phương trình đường thẳng d đi qua điểm M(1,2) và cắt các tia ox,oy lần lượt tại A,B (khác gốc tọa độ O) sao cho tam giác OAB có diện tích bằng 4.
Trong không gian với hệ tọa độ Oxy cho mặt phẳng α : 2 x - y - 3 z = 4 . Gọi A ,B ,C lần lượt là giao điểm của mặt phẳng α với các trục tọa độ Ox, Oy, Oz. Thể tích tứ diện OABC bằng:
A. 1.
B. 2.
C. 32 9
D. 16 9