Cho các số a,b,c khác 0 thỏa mãn ab+bc+ca=0.Tính giá trị biểu thức:
P=bc/a^2 +ca/b^2 +ab/c^2
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
Cho 3 số a, b, c khác 0 thỏa mãn: ab+bc+ca=0. Hãy tính giá trị biểu thức \(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)
\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)
Cho số thực a,b,c khác 0 thỏa mãn 2ab+bc+2ca=0. Hãy tính giá trị cuả biểu thức A=bc/8a^2+ca/b^2+ab/c^2
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
cho ba số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a (với giả thiết các tỉ số đều có nghĩa).
Tính giá trị của biểu thức M=ab+bc+ca / a^2+b^2+c^2
với a,b,c khác 0 ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) => \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)=>\(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\) =>\(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) =>a=b=c => M=1
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2
\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)
Cjo a,b,c khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a
Tính giá trị biểu thức M=ab+bc+ca/a^2+b^2+c^2
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
Cho a, b, c là 3 số khác 0 thỏa mãn : ab/a+b = bc/b+c = ca/c+a ( với giả thiết các tỉ số đều có nghĩa)
Tính giá trị của biểu thức M = ab+bc+ca / a2+b2+c2
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)