Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 16:46

\(f'\left(x\right)=2-\dfrac{\pi}{2}sin\left(\dfrac{\pi x}{3}\right)=\dfrac{1}{2}\left(4-\pi sin\left(\dfrac{\pi x}{2}\right)\right)\)

Do \(\left|\pi sin\left(\dfrac{\pi x}{2}\right)\right|\le\pi< 4\Rightarrow f'\left(x\right)>0\) ; \(\forall x\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow f\left(x\right)_{min}+f\left(x\right)_{max}=f\left(-2\right)+f\left(2\right)=-4+cos\left(-\pi\right)+4+cos\left(\pi\right)=-2\)

Thiên Yết
Xem chi tiết
vvvvvvvv
Xem chi tiết
Phạm Nhật Trúc
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 17:34

Đề là:

\(y=\sqrt{4-3cos^23x}+1\) đúng không nhỉ?

Ta có:

\(0\le cos^23x\le1\Rightarrow1\le\sqrt{4-3cos^23x}\le2\)

\(\Rightarrow2\le y\le3\)

\(y_{min}=2\) khi \(cos^23x=1\)

\(y_{max}=3\) khi \(cos3x=0\)

Phạm Nhật Trúc
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 13:20

\(-1\le cos\left(\sqrt{x}+\dfrac{\pi}{4}\right)\le1\Rightarrow-5\le y\le5\)

\(y_{max}=5\) khi \(cos\left(\sqrt{x}+\dfrac{\pi}{4}\right)=1\)

\(y_{min}=-5\) khi \(cos\left(\sqrt{x}+\dfrac{\pi}{4}\right)=-1\)

vvvvvvvv
Xem chi tiết
Phạm Nhật Trúc
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 13:18

\(x\in\left[\dfrac{1}{4};\dfrac{3}{2}\right]\Rightarrow\pi x\in\left[\dfrac{\pi}{4};\dfrac{3\pi}{2}\right]\)

\(\Rightarrow cos\left(\pi x\right)\in\left[-1;\dfrac{\sqrt{2}}{2}\right]\)

\(y_{max}=\dfrac{\sqrt{2}}{2}\) khi \(x=\dfrac{1}{4}\)

\(y_{min}=-1\) khi \(x=1\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
18 tháng 5 2017 lúc 15:55

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Pánh Pao Chay
Xem chi tiết
Hồng Phúc
2 tháng 8 2021 lúc 13:47

Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)

\(y=1-8sin^22x.cos^22x+2sin^42x\)

\(=1-2sin^24x+2sin^42x\)

\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)

\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)