Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=sin\dfrac{2x}{x^2+1}+cos\dfrac{x}{x^2+1}+1\)
Xác định tính chẵn lẻ của các hàm số :
a) \(y=\dfrac{\cos2x}{x}\)
b) \(y=x-\sin x\)
c) \(y=\sqrt{1-\cos x}\)
d) \(y=1+\cos x\sin\left(\dfrac{3\pi}{2}-2x\right)\)
Tìm giá trị lớn nhất , nhỏ nhất của hàm số:
a/ \(f\left(x\right)=2\cos x-3\)
b/ \(f\left(x\right)=3\sqrt{7+2\sin x}\)
c/ \(f\left(x\right)=3\sqrt{7+2\sin^2x}\)
d/ \(f\left(x\right)=\dfrac{2-5\cos^2x}{3}\)
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = 2\(\cos\)(x + \(\frac{\pi}{3}\)) ; b) y = \(\sqrt{1-\sin\left(x^2\right)}\) \(-\)1 ; c) y = 4\(\sin\sqrt{x}\)
Giá trị lớn nhất, nhỏ nhất của các hàm số :
a/ \(y=\sqrt{2-\sin x}\)
b/ \(y=\sin\dfrac{x}{2-x}\)
c/ \(y=\sin\left(\dfrac{2x}{\sqrt{x-1}}\right)\)
d/ \(y=\tan x+\cot2x\)
e/ \(y=\sqrt{\dfrac{\cos x+3}{\sin x+1}}\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
cho các hàm số sau : a) y = \(-\sin^2x\) ; b) y = \(3\tan^2x+1\) ; c) y = \(\sin x\cos x\) ; d) y = \(\sin x\cos x+\frac{\sqrt{3}}{2}\cos2x\)
chứng minh rằng mỗi hàm số trên đều có tính chất : f\(\left(x+k\pi\right)\)=f(x) với k thuộc Z , x thuộc tập xác định của hàm số f .
cho các hàm số sau : a) y = \(-\sin^2x\) ; b) y = \(3\tan^2x+1\) ; c) y = \(\sin x\cos x\) ; d) y = \(\sin x\cos x+\frac{\sqrt{3}}{2}\cos2x\)
chứng minh rằng mỗi hàm số trên đều có tính chất : f\(\left(x+k\pi\right)\)=f(x) với k thuộc Z , x thuộc tập xác định của hàm số f .