Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Hồng Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 11:48

a) Xét ΔABC vuông tại A có

\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)

Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)

\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)

\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)

Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)

b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)

\(=2\cdot AB\cdot AC\cdot0\)

=0

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)

Nkjuiopmli Sv5
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 17:32

\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}=\dfrac{a}{bc}\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{a}{bc}\)

\(\Leftrightarrow a^2+b^2+c^2=2a^2\)

\(\Leftrightarrow a^2=b^2+c^2\)

\(\Rightarrow\) Tam giác vuông tại A theo Pitago đảo

Nguyễn Hoàng trung
Xem chi tiết
An Thy
7 tháng 6 2021 lúc 17:47

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

Bống
Xem chi tiết
NgVH
Xem chi tiết

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\frac{BH}{BA}=\frac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

ΔBHA~ΔBAC

=>\(\frac{AH}{AC}=\frac{BA}{BC}\)

=>\(AH=\frac{AB\cdot AC}{BC}=\frac{6\cdot8}{10}=4,8\left(\operatorname{cm}\right)\)

c: Xét ΔBAH có BI là phân giác

nên \(\frac{IH}{IA}=\frac{BH}{BA}\) (1)

Xét ΔBAC có BD là phân giác

nên \(\frac{DA}{DC}=\frac{BA}{BC}\left(2\right)\)

ΔBHA~ΔBAC

=>\(\frac{BH}{BA}=\frac{BA}{BC}\) (3)

Từ (1),(2) suy ra \(\frac{IH}{IA}=\frac{DA}{DC}\)

d: Ta có: \(AH^2+HB^2=AB^2\) (ΔAHB vuông tại H)

=>\(BH^2=6^2-4,8^2=3,6^2\)

=>BH=3,6(cm)

ΔAHB vuông tại H

=>\(S_{HAB}=\frac12\cdot HA\cdot HB=\frac12\cdot4,8\cdot3,6=2,4\cdot3,6=8,64\left(\operatorname{cm}^2\right)\)

Ta có: \(\frac{IA}{IH}=\frac{BA}{BH}\)

=>\(\frac{IA}{IH}=\frac{6}{3.6}=\frac53\)

=>\(\frac{AI}{AH}=\frac58\)

=>\(S_{BIA}=\frac58\cdot S_{HAB}=\frac58\cdot8,64=5,4\left(\operatorname{cm}^2\right)\)

Quốc Bảo Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 17:34

loading...  

Hong Dao
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 0:17

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

Emily Nain
Xem chi tiết
Nguyễn An
Xem chi tiết