Kết quả rút gọn \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
Rút gọn các biểu thức sau
b, \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2a\left(b-c\right)\)
\(=a^2-2a\left(b-c\right)+2a\left(b-c\right)\)
\(=a^2\)
Rút gọn:
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
với: c2+2ab-2ac-2bc=0; b\(\ne\)c; a+b\(\ne\)c
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+a^2-2ac+c^2}{b^2+b^2-2bc+c^2}\)
\(=\dfrac{2a^2-2ac+c^2}{2b^2-2bc+c^2}\)
Rút gọn:
\(\dfrac{\left(a+b\right)^3-c^3}{a+b+c}\)
\(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
Cái đầu ko rút gọn được
Cái sau:
\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\dfrac{a+b-c}{a-b+c}\)
Rút gọn:
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-\left(b^2-2bc+c^2\right)+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)
\(=a^2\)
Siêu sao bóng đá Lần sau nhớ gõ Latex nhé, tiêu đề bạn nên viết rõ ra như là Toán lớp 8 nhân đa thứ với đa thức chẳng hạn
cho \(c^2+2ab-2ac-2bc\)
rút gọn biểu thức \(P=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
Rút gọn biểu thức:
\(a.\left(a-b+c\right)^2\)
\(b.\left(2a+3b-4c\right)^2\)
\(c.\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(d.\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(\left(a-b+c\right)^2=\left[a+\left(-b\right)+c\right]^2\)
\(=a^2+\left(-b^2\right)+c^2+2.a.\left(-b\right)+2.\left(-b\right)\left(-c\right)+2.c.a\)
\(=a^2+b^2+c^2-2ab-2bc+2ca\)
cho b khác c, a + b khác c và c2 + 2ab - 2ac - 2bc =0
rút gọn M = \(\frac{a^2+\left(a-c^2\right)}{b^2+\left(b-c^2\right)}\)
ai làm đúng tick cho
Rút gọn các phân thức :
a ) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}\) b.\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
a) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)
b ) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{a^2+2ab+b^2-c^2}{a^2+ac+c^2-b^2}\)
\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a-b+c}\)
Rút gọn các phân thức sau :
a ) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}\) b ) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
a ) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)
b ) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}\)
\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a-b+c}\)
a) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)
b) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)