Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Xuân
Xem chi tiết
Nguyễn Quốc Tài
Xem chi tiết
Puzzy_Cô nàng bí ẩn
21 tháng 7 2016 lúc 10:42

a, Ta có: A=x2+2x+3 =x2+2x+1+2

                  = (x+1)2+2>0

b, B= -(x2-4x+5) = -(x2-4x+4)-1

       = -(x-2)2-1<0

Chúc bạn học tốt!

Nobi Nobita
21 tháng 7 2016 lúc 10:42

a)x2+2x+3

=x2+2.x.1+12+2

=(x+1)2+2

         Vì (x+1)2\(\ge0\)

   Suy ra:(x+1)2+2\(\ge2\)(đpcm)

b)-x2+4x-5

=-(x2-4x+5)

=-(x2-2.2x+4)-1

=-(x-2)2-1

             Vì -(x-2)2\(\le0\)

     Suy ra -(x-2)2-1\(\le-1\)(đpcm)

Võ Đông Anh Tuấn
21 tháng 7 2016 lúc 10:42

a ) \(x^2+2x+3\)

\(\Rightarrow x^2+2x+1+2\)

\(\Rightarrow\left(x+1\right)^2+2\ge2\)

\(\Rightarrow x^2+2x+3\) luôn dương với mọi nguyên x

b ) \(-x^2+4x-5\)

\(\Rightarrow-\left(x^2-4x+5\right)\)

\(\Rightarrow-\left(x^2-4x+4+1\right)\)

\(\Rightarrow-1-\left(x-2\right)^2\Leftarrow-1\)

\(\Rightarrow-x^2+4x-5\) luôn âm với mọi nguyên x

Đặng vân anh
Xem chi tiết
Hoàng Thủy Tiên
20 tháng 7 2016 lúc 13:54

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

Đoàn Thị Huyền Đoan
20 tháng 7 2016 lúc 14:01

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

Cao Minh Ngọc
7 tháng 8 lúc 16:12

a.x2+ 2x+ 3

=x2+ 2.x.1+ 12- 12+ 3

= (x+1)2 -1+3

= (x+1)2+ 2

Ta có: (x+1)≥0

           (x+1)2+ 3≥ 3>0

⇒x2+ 2x+ 3>0 mọi x

Vậy x2+ 2x+3>0 mọi x

b. -x2+ 4x- 5

= - (x2- 4x +5)

= - (x2- 2.x.2+ 22- 22+ 5)

= - ((x- 2)2- 4+ 5)

= - ((x- 2)2+1)

= -(x- 2)2 -1

Ta có: (x-2)2 ≥0

         - (x-2)2 ≤0

         - (x-2)+1≤ 1

⇒ -x2+ 4x- 5 <0 mọi x

Vậy -x2+ 4x- 5 <0 mọi x

         

Hằng Dương Thị
Xem chi tiết
Minh Triều
13 tháng 7 2015 lúc 16:56

a) x2-6x+10

=x2-6x+9+1

=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)

vậy  x^2-6x+10 luôn luôn dương với mọi x

4x-x2-5

=-x2+4x-4-1

=-(x2-4x+4)-1

=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )

vậy 4x-x^2-5 luôn luôn âm với mọi x

Lê hồng Nhung
22 tháng 9 2016 lúc 16:23

A=x^2+x+1 luon luon dương với mọi x

❊ Linh ♁ Cute ღ
17 tháng 7 2018 lúc 14:12

a)x^2+2x+3

=x^2+2.x.1+1^2+2

=(x+1)^2+2

         Vì (x+1)^2≥0

   Suy ra:(x+1)^2+2(đpcm)

b)-x^2+4x-5

=-(x^2-4x+5)

=-(x^2-2.2x+4)-1

=-(x-2)^2-1

             Vì -(x-2)^2≤0

     Suy ra -(x-2)^2-1≤-1(đpcm)

ỉn2k8>.
Xem chi tiết
Aurora
30 tháng 6 2021 lúc 9:02

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

Nguyễn Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 9 2021 lúc 23:31

a: \(A=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b: \(B=-x^2+4x-17\)

\(=-\left(x^2-4x+17\right)\)

\(=-\left(x^2-4x+4+13\right)\)

\(=-\left(x-2\right)^2-13< 0\forall x\)

Lấp La Lấp Lánh
24 tháng 9 2021 lúc 23:31

a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)

Ruby
24 tháng 9 2021 lúc 23:51

a) A = \(x^2-x+1\) 

        = \(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\left(\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)

         = \(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)

Với mọi \(x\) ta có:

            \(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0

        ➩\(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\) > \(\dfrac{3}{4}\)

        ➩\(\left(x-\dfrac{1}{2}\right)^2\)  + \(\dfrac{3}{4}\) > 0

        ➩\(x^2-x+1\) > 0

         ➩ A > 0

Vậy biểu thức A = \(x^2-x+1\) luôn dương với mọi \(x\)

 

ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Kiệt Nguyễn
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Kiệt Nguyễn
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

Huynh thi kim yen
Xem chi tiết
le dinh dung
26 tháng 7 2017 lúc 18:31

ta co A=4x^2-2x+3

A=4x^2-2x+1+2

a=

OoO Kún Chảnh OoO
Xem chi tiết
Nguyên
1 tháng 8 2016 lúc 9:59

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

Nguyễn Phùng Nguyên Hươn...
1 tháng 8 2016 lúc 10:34

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)