a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
chứng minh
a) x2 + 2x +3 luôn dương với mọi x
b) x2 - 3x +5 luôn dương với mọi x
c) - x2 + 4x - 5 luôn âm với mọi x
d) -3x - 6x -7 luôn âm với mọi x
a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
a, Ta có: A=x2+2x+3 =x2+2x+1+2
= (x+1)2+2>0
b, B= -(x2-4x+5) = -(x2-4x+4)-1
= -(x-2)2-1<0
Chúc bạn học tốt!
a)x2+2x+3
=x2+2.x.1+12+2
=(x+1)2+2
Vì (x+1)2\(\ge0\)
Suy ra:(x+1)2+2\(\ge2\)(đpcm)
b)-x2+4x-5
=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-(x-2)2-1
Vì -(x-2)2\(\le0\)
Suy ra -(x-2)2-1\(\le-1\)(đpcm)
a ) \(x^2+2x+3\)
\(\Rightarrow x^2+2x+1+2\)
\(\Rightarrow\left(x+1\right)^2+2\ge2\)
\(\Rightarrow x^2+2x+3\) luôn dương với mọi nguyên x
b ) \(-x^2+4x-5\)
\(\Rightarrow-\left(x^2-4x+5\right)\)
\(\Rightarrow-\left(x^2-4x+4+1\right)\)
\(\Rightarrow-1-\left(x-2\right)^2\Leftarrow-1\)
\(\Rightarrow-x^2+4x-5\) luôn âm với mọi nguyên x
chứng minh rằng biểu thức
a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
a.x2+ 2x+ 3
=x2+ 2.x.1+ 12- 12+ 3
= (x+1)2 -1+3
= (x+1)2+ 2
Ta có: (x+1)2 ≥0
(x+1)2+ 3≥ 3>0
⇒x2+ 2x+ 3>0 mọi x
Vậy x2+ 2x+3>0 mọi x
b. -x2+ 4x- 5
= - (x2- 4x +5)
= - (x2- 2.x.2+ 22- 22+ 5)
= - ((x- 2)2- 4+ 5)
= - ((x- 2)2+1)
= -(x- 2)2 -1
Ta có: (x-2)2 ≥0
- (x-2)2 ≤0
- (x-2)2 +1≤ 1
⇒ -x2+ 4x- 5 <0 mọi x
Vậy -x2+ 4x- 5 <0 mọi x
chứng tỏ rằng
a) x^2-6x+10 luôn luôn dương với mọi x
b) 4x-x^2-5 luôn luôn âm với mọi x
a) x2-6x+10
=x2-6x+9+1
=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)
vậy x^2-6x+10 luôn luôn dương với mọi x
4x-x2-5
=-x2+4x-4-1
=-(x2-4x+4)-1
=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )
vậy 4x-x^2-5 luôn luôn âm với mọi x
a)x^2+2x+3
=x^2+2.x.1+1^2+2
=(x+1)^2+2
Vì (x+1)^2≥0
Suy ra:(x+1)^2+2≥(đpcm)
b)-x^2+4x-5
=-(x^2-4x+5)
=-(x^2-2.2x+4)-1
=-(x-2)^2-1
Vì -(x-2)^2≤0
Suy ra -(x-2)^2-1≤-1(đpcm)
B1 CMR biểu thức sau luôn dương với mọi x
A=x^2-6x+15
B=4x^2+4x+7
B2 CMR biểu thức sau luôn âm với mọi x
A=-9x^2+6x-2021
B=-2x^2+2x-7
B3 Tìm x
A) (x-2)^2 - (3-4x)^2 +15x^2=0
B) (x-3)(x^2+3x+9)-x(x+2)(2-x)=0
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
CMR
a, Biểu thức A= x^2-x+1 luôn dương với mọi x
b, Biểu thức B=4x-17-x^2 luôn âm với mọi x
a: \(A=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b: \(B=-x^2+4x-17\)
\(=-\left(x^2-4x+17\right)\)
\(=-\left(x^2-4x+4+13\right)\)
\(=-\left(x-2\right)^2-13< 0\forall x\)
a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)
a) A = \(x^2-x+1\)
= \(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\left(\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)
= \(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)
Với mọi \(x\) ta có:
\(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0
➩\(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\) > \(\dfrac{3}{4}\)
➩\(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\) > 0
➩\(x^2-x+1\) > 0
➩ A > 0
Vậy biểu thức A = \(x^2-x+1\) luôn dương với mọi \(x\)
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
Chứng tỏ bt sau luôn âm hoặc luôn dương với mọi x:
A= 4x2-2x+3
bài 3 : Chứng minh : các biểu thức sau luôn dương hoặc luôn âm với mọi giá trị của x
a) x^2 -x + 1
b) x^2 +x+2
c) -x^2 + x-3
d) \(\frac{3x^2-x+1}{-4x^2+2x-1}\)
ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi
a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0
b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)