Cho tam giác DEF vuông tại D , đường cao DH. Cho biét DE = 7 cm ; EF = 25cm.a/ Tính độ dài các đoạn thẳng DF , DH , EH , HF. b/ Kẻ HM ⊥ DE và HN ⊥ DF . Tính diện tích tứ giác EMNF. (Làm tròn đến hai chữ số thập phân)
1) Cho tam giác DEF vuông tại D có đường cao DH, Cho DE = 12cm, EF = 20cm. Tính độ dài các
cạnh DF, DH, EH, FH ?
2) Cho tam giác DEF vuông tại D có đường cao DH, Cho EH = 7,2cm, FH = 12,8cm. Tính độ dài
các cạnh EF, DH, DE, DF?
giúp e với ạ e cần gấp
Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 9 cm, DF = 12 cm a) Tính tỷ số lượng giác của góc E b) Tính độ dài DH
\(a,EF=\sqrt{DE^2+DF^2}=15\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{9}{15}=\dfrac{3}{5}\\ \cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{12}{15}=\dfrac{4}{5}\\ \tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{9}{12}=\dfrac{3}{4}\\ \cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{4}{3}\\ b,Áp.dụng.HTL:DH\cdot EF=DE\cdot DF\\ \Rightarrow DH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Câu 4 (3,0 điểm). Cho tam giác DEF vuông tại D, có DE = 9cn , DF = 12 cm , đường cao DH. 1) Chứng minh ADEF n*Delta * H * E * D
Cho tam giác DEF vuông tại D có đường cao DH. Biết DE = 30cm; HF = 32cm. Tính độ dài DH; EH.
Hình tự vẽ nha bạn
Xét tam giác EDF vuông tại D
Áp dụng hệ thức lượng trong tam giác vuông có
* ED2 = EH.HF
Thay số: 302 = EH.32
=> EH = 28,125cm
* DH2 = EH.HF
Thay số DH2 = 28,125 . 32 => DH = 30cm
Cho tam giác DEF vuông tại D có DE=6cm:DF=8cm gọi DH là đường cao của tam giác DEF hãy tìm 3 cặp tam giác đồng dạng giải thích
Để tìm 3 cặp tam giác đồng dạng với tam giác DEF, ta có thể sử dụng các định lý đồng dạng trong tam giác.
Tam giác DHE đồng dạng với tam giác DEF Ta có: Góc D của tam giác DEF bằng góc D của tam giác DHE (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE) Góc E của tam giác DEF bằng góc H của tam giác DHE (do HE là đường cao của tam giác DHE, nên góc HED vuông góc với DE) Từ hai quan sát trên, ta suy ra tam giác DHE đồng dạng với tam giác DEF theo định lý góc-góc-góc. Tam giác EFD đồng dạng với tam giác DEF Ta có: Tam giác EFD cũng là tam giác vuông tại D, nên góc D bằng góc D của tam giác DEF. Từ đó, ta có hai góc D giống nhau ở hai tam giác, còn lại là góc E và góc F, ta có:EF/DF = (DE + DF)/DF = (6+8)/8 = 7/4
ED/DF = DE/DF = 6/8 = 3/4
Từ hai tỉ lệ này, ta suy ra tam giác EFD đồng dạng với tam giác DEF theo định lý góc - cân - góc. Tam giác EHD đồng dạng với tam giác DEF Ta có: Góc D của tam giác DEF bằng góc H của tam giác EHD (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE; HE là đường cao của tam giác EHD, nên góc HES vuông góc với ED; do đó ta có góc H bằng góc D) Góc E của tam giác DEF bằng góc E của tam giác EHD (do cả hai tam giác đều chứa cạnh ED) Từ hai quan sát trên, ta suy ra tam giác EHD đồng dạng với tam giác DEF theo định lý góc-góc-góc.Vậy ta đã tìm được 3 cặp tam giác đồng dạng với tam giác DEF, đó là: DHE, EFD, EHD.
cho tam giác DEF vuông tại D, đường cao DH. Cho DE=6cm, DF=8cm. Gọi M và N lần lượt là hình chiếu H trên DE và DE. Trung tuyến DK của tam giác DEF cắt MN tại I. CMR: HE.HF=DN.DF, tính tỉ số DI/DH
Cho tam giác DEF vuông tại D , đường cao DH , biết DE=6cm EH bằng 3.6cm , tính HF , DF
Xét tam giác DEF vuông tại D, đường cao DH
* Áp dụng hệ thức : \(DE^2=EH.EF\Rightarrow EF=\dfrac{36}{3,6}=10\)cm
-> HF = EF - EH = 10 - 3,6 = 6,4 cm
* Áp dụng hệ thức : \(DF^2=HF.EF=6,4.10=64\Rightarrow DF=8\)cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DE^2=EH\cdot EF\)
\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)
Ta có: FH+EH=FE(H nằm giữa F và E)
nên FH=10-3,6=6,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DF^2=FH\cdot FE\)
\(\Leftrightarrow DF^2=64\)
hay DF=8(cm)
Cho tam giác DEF vuông tại D , đường cao DH , biết DE=6cm EH bằng 3.6cm , tính HF , DF
Cho tam giác DEF vuông tại D , đường cao DH , biết DE=6cm EH bằng 3.6cm , tính HF , DF - Hoc24
bạn kham khảo link, mình làm nãy rồi nhé
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DE^2=EH\cdot EF\)
\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)
Ta có: FH+EH=FE(H nằm giữa F và E)
nên FH=10-3,6=6,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DF^2=FH\cdot FE\)
\(\Leftrightarrow DF^2=64\)
hay DF=8(cm)