Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
28-9A14- Kim Nhung
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 10 2021 lúc 15:11

\(a,EF=\sqrt{DE^2+DF^2}=15\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{9}{15}=\dfrac{3}{5}\\ \cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{12}{15}=\dfrac{4}{5}\\ \tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{9}{12}=\dfrac{3}{4}\\ \cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{4}{3}\\ b,Áp.dụng.HTL:DH\cdot EF=DE\cdot DF\\ \Rightarrow DH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)

Hà Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 21:47

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

Quan Vu
Xem chi tiết
Razen
Xem chi tiết
Hquynh
22 tháng 9 2021 lúc 12:38

Có sai đề ko vậy bẹn

Đỗ Thanh Hải
22 tháng 9 2021 lúc 12:52

Hình tự vẽ nha bạn

Xét tam giác EDF vuông tại D

Áp dụng hệ thức lượng trong tam giác vuông có

* ED2 = EH.HF 

Thay số: 30= EH.32

=> EH = 28,125cm

* DH2 = EH.HF

Thay số DH2 = 28,125 . 32 => DH = 30cm

Sùnglan
Xem chi tiết
Nguyễn Đắc Linh
20 tháng 3 2023 lúc 17:27

Để tìm 3 cặp tam giác đồng dạng với tam giác DEF, ta có thể sử dụng các định lý đồng dạng trong tam giác.

Tam giác DHE đồng dạng với tam giác DEF Ta có: Góc D của tam giác DEF bằng góc D của tam giác DHE (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE) Góc E của tam giác DEF bằng góc H của tam giác DHE (do HE là đường cao của tam giác DHE, nên góc HED vuông góc với DE) Từ hai quan sát trên, ta suy ra tam giác DHE đồng dạng với tam giác DEF theo định lý góc-góc-góc. Tam giác EFD đồng dạng với tam giác DEF Ta có: Tam giác EFD cũng là tam giác vuông tại D, nên góc D bằng góc D của tam giác DEF. Từ đó, ta có hai góc D giống nhau ở hai tam giác, còn lại là góc E và góc F, ta có:

EF/DF = (DE + DF)/DF = (6+8)/8 = 7/4

ED/DF = DE/DF = 6/8 = 3/4

Từ hai tỉ lệ này, ta suy ra tam giác EFD đồng dạng với tam giác DEF theo định lý góc - cân - góc. Tam giác EHD đồng dạng với tam giác DEF Ta có: Góc D của tam giác DEF bằng góc H của tam giác EHD (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE; HE là đường cao của tam giác EHD, nên góc HES vuông góc với ED; do đó ta có góc H bằng góc D) Góc E của tam giác DEF bằng góc E của tam giác EHD (do cả hai tam giác đều chứa cạnh ED) Từ hai quan sát trên, ta suy ra tam giác EHD đồng dạng với tam giác DEF theo định lý góc-góc-góc.

Vậy ta đã tìm được 3 cặp tam giác đồng dạng với tam giác DEF, đó là: DHE, EFD, EHD.

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Long
Xem chi tiết
Nguyễn Huy Tú
7 tháng 8 2021 lúc 22:12

Xét tam giác DEF vuông tại D, đường cao DH 

* Áp dụng hệ thức : \(DE^2=EH.EF\Rightarrow EF=\dfrac{36}{3,6}=10\)cm 

-> HF = EF - EH = 10 - 3,6 = 6,4 cm

* Áp dụng hệ thức : \(DF^2=HF.EF=6,4.10=64\Rightarrow DF=8\)cm

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 22:25

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:

\(DE^2=EH\cdot EF\)

\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)

Ta có: FH+EH=FE(H nằm giữa F và E)

nên FH=10-3,6=6,4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:

\(DF^2=FH\cdot FE\)

\(\Leftrightarrow DF^2=64\)

hay DF=8(cm)

Nguyễn Long
Xem chi tiết
Nguyễn Huy Tú
7 tháng 8 2021 lúc 22:21
Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 22:25

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:

\(DE^2=EH\cdot EF\)

\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)

Ta có: FH+EH=FE(H nằm giữa F và E)

nên FH=10-3,6=6,4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:

\(DF^2=FH\cdot FE\)

\(\Leftrightarrow DF^2=64\)

hay DF=8(cm)