Cho tam giác ABC vuông tại A, đường cao AH. Lấy điểm D bất kỳ trên cạnh BC, kẻ de vuông góc với AC
a. chứng minh rằng EF= AD
b. gọi o là giao điểm cua EF và AD. chứng minh rằng HO = 1/2 EF
c. tìm vị trí của điểm D trên BC sao cho EF có độ dài nhỏ nhất
Cho tam giác abc có CB<CA và góc CBA>90 độ. Điểm D nằm giữa hai điểm A và C sao cho CBD=BAC
a)cm tam giác ABC đồng dạng với tam giác BDC
b) Tia phân giác của góc ACB cắt BA tại E và BD tại F. chứng minh FD/FB=EB/EA
c) Đường thẳng vuông góc với CE tại C cắt đường thẳng AB tại H. cm HE.EA=HA.EB
Cho tam giác abc có CB<CA và góc CBA>90 độ. Điểm D nằm giữa hai điểm A và C sao cho CBD=BAC
a)cm tam giác ABC đồng dạng với tam giác BDC
b) Tia phân giác của góc ACB cắt BA tại E và BD tại F. chứng minh FD/FB=EB/EA
c) Đường thẳng vuông góc với CE tại C cắt đường thẳng AB tại H. cm HE.EA=HA.EB
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
Bài 10: Cho ∆ABC cân tại A. Đường vuông góc với BC tại B cắt đường vuông góc với AC tại Có D. Vẽ BE vuông góc với CD tại E. gọi M là giao điểm của AD và BE. Vē EN vuông góc với BD tại N. a) Chứng minh DE/DC = DM/DA b) Chứng minh MN//AB. c) Chứng minh ME = MB
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a
cho tam giác ABC vuông tại A điểm M bất kì trên cạnh BC gọi D và E theo thứ tự chân đương vuông góc kẻ từ M đến AB và AC,chứng minh AM=DE(vẽ hình)
Cho \(\Delta ABC\) vuông tại A , AD là đường cao , từ D kẻ DE \(\perp\) AB ( E \(\in\) AB ) và DF \(\perp\) AC ( F \(\in\) AC ) .
a, Chứng minh \(\frac{AE}{AB}\) + \(\frac{AF}{AC}\) không đổi khi AB , AC thay đổi về độ dài .
b, Tính EF nếu AB = 3 cm , AC = 4 cm .
Giúp mình với ạ !!!!!! Mình cảm ơn nhiều!
Cho tam giác ABC , trung tuyến AM ; Từ D thuộc BM kẻ tia // AM cắt AB,AC tại E,F
a, Chứng minh : DE/DB=DF/DC
b, Cho DE.DF=DB.DC . CM tam giác ABC vuông tại A
c, Cho DE.DF=DB.DC . CM: DE+DF=DB+DC