Tìm x: (125 x^2) - ((2x+1)^3) - ((3x-1)^3)=0
Bài 1: tìm x
1, 2x(3x-1)+1-3x=0
2, x\(^2\)(2x-3)+12-8x=0
3, 25(x-1)\(^2\)-4=0
4, 25x\(^2\)-10x+1=0
5, -4x\(^2\)+\(\dfrac{1}{9}\)=0
6, (x-1)\(^3\)=8
7, (2x-1)\(^3\)+27=0
8, 125+\(\dfrac{1}{8}\)(x-1)\(^3\)=0
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
`@` `\text {Ans}`
`\downarrow`
`5,`
`-4x^2 + 1/9 = 0`
`<=> -4x^2 = 0 - 1/9`
`<=> -4x^2 = -1/9`
`<=> 4x^2 = 1/9`
`<=> x^2 = 1/9 \div 4`
`<=> x^2 = 1/36`
`<=> x^2 = (+-1/6)^2`
`<=> x = +-1/36`
Vậy, `S = {1/36; -1/36}`
`6,`
`(x-1)^3 = 8`
`<=> (x-1)^3 = 2^3`
`<=> x-1=2`
`<=> x = 2 + 1`
`<=> x = 3`
Vậy, `S = {3}`
`7,`
`(2x-1)^3 + 27 = 0`
`<=> (2x - 1)^3 = -27`
`<=> (2x-1)^3 = (-3)^3`
`<=> 2x - 1 = -3`
`<=> 2x = -3 + 1`
`<=> 2x = -2`
`<=> x = -1`
Vậy,` S = {-1}`
`8,`
`125 + 1/8(x-1)^3 = 0`
`<=> 1/8(x-1)^3 = - 125`
`<=> (x-1)^3 = -125 \div 1/8`
`<=> (x-1)^3 = -1000`
`<=> (x-1)^3 = (-10)^3`
`<=> x - 1 = - 10`
`<=> x = -10+1`
`<=> x = -9`
Vậy, `S = {-9}.`
B1. Tính giá trị: A=(x+2)^2 - (x-2)^2 với x=125
B2. Thu gọn:
a, 2x.(2x-1)^2 - 3x.(x+3).(x-3) - 4x.(x+1)^2
b. (3x+1)^2 - 2.(3x+1).(3x+5) + (3x+5)^2
B3: Tìm x biết (x+2)^2 - x^2 +4=0
b1
A=(125+2)2 - (125-2)2 = 1272 - 1232 = 1000
1) x(x-3)-2x(x-3)=0
2) x(3x-1)-5(1-3x)=0
3) 5(x+3)-2x(3x+3)=0
4) 4x(x+3)-x-3=0
5) x3+15x2+75x+125=0
6) 4x2-12x+9=0
7) x2-16x+60=0
8) x3+48x=12x2+64
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
tìm x biết
a,2^11=x
b, 2^2016=x
c,(2x+1)^3=125
d, (2x-3)^2=625
e(2x-4)^2014+(3x-6)^2016< hoặc bằng 0
Trả lời nhanh giùm mình bài này nha:
Tìm x:
( 5x + 11 ) - ( 3x - 1 ) = 4 - x
( x + 3 )^2 = 0,81
( x - 2 )^3 = -1/125
( x - 3 ) × ( x + 5 ) = 0
x^2 - 2x = 0
| x - 3 | = 5
| x + 5 | + 6 = 7
Câu 1 : Áp dụng dấu ngoặc là ra thui bạn tự làm
Câu 2 :
\(\left(x+3\right)^2=0,81\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x+3\right)^2=0,9^2\\\left(x+3\right)^2=\left(-0,9\right)^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x+3=0,9\\x+3=-0,9\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0,9-3\\x=-0,9-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2,1\\x=-3,9\end{cases}}}\)
Vậy \(x=-2,1\) hoặc \(x=-3,9\)
Chúc bạn học tốt ~
Toán lớp 6 mà có bình phương nữa hả e?
Câu 3 :
\(\left(x-2\right)^3=\frac{-1}{125}\)
\(\Leftrightarrow\)\(\left(x-2\right)^3=\frac{\left(-1\right)^3}{5^3}\)
\(\Leftrightarrow\)\(\left(x-2\right)^3=\left(\frac{-1}{5}\right)^3\)
\(\Leftrightarrow\)\(x-2=\frac{-1}{5}\)
\(\Leftrightarrow\)\(x=\frac{-1}{5}+2\)
\(\Leftrightarrow\)\(x=\frac{9}{5}\)
Vậy \(x=\frac{9}{5}\)
Chúc bạn học tốt ~
Tìm x biết :;
a) ( x -7 ) . ( 8 +x ) = 0
b) (x-2) . (x + 5) < 0
c) ( 2x + 2 ) 2 = 9
d) ( 1 -2x ) 4 = 81
e) ( 1 + 3x ) 3 = 125
\(a,\left(x-7\right)\left(8+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-7=0\\8+x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-8\end{cases}}}\)
Vậy x = 7 hoặc x = -8
\(b,\left(x-2\right)\left(x+5\right)< 0\)
\(\Rightarrow\orbr{\begin{cases}x-2< 0\\x+5< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x< -5\end{cases}}}\)
Vây...
\(c,\left(2x+2\right)^2=9\)
\(\Rightarrow\left(2x+2\right)^2=3^2\)
\(\Rightarrow2x+2=3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy...
\(d,\left(1-2x\right)^4=81\)
\(\Rightarrow\left(1-2x\right)^4=3^4\)
\(\Rightarrow1-2x=3\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)
Vậy...
\(e,\left(1+3x\right)^3=125\)
\(\Rightarrow\left(1+3x\right)^3=5^3\)
\(\Rightarrow1+3x=5\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy...
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x
a.(x+2).(x+3)-(x-2).(x+5) = 0
b. (2x+3).(x-4)+(x-5)(x+2) = (3x-5)(x-4)
c. (3x+2)(2x+9)-(x+2)(6x+1) = x+1-(x-6)
d. 3( 2x-1).(3x-1)-(2x-3).(9x-1)=0
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8