Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hung Ngo
Xem chi tiết
kiss_rain_and_you
19 tháng 4 2015 lúc 21:39

= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2 

= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b

Hà Văn Minh Hiếu
Xem chi tiết
Chu Công Đức
6 tháng 1 2020 lúc 18:43

\(4a^2b^2+4ab+1=\left(2ab\right)^2+2.2ab.1+1^2=\left(2ab+1\right)^2\ge0\left(\forall a,b\right)\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 11:19

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

Chymtee Ngânn
Xem chi tiết
Kiêm Hùng
20 tháng 4 2020 lúc 9:27

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)

Trần Hà My
Xem chi tiết
Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:25

1, Áp dụng BĐT cosi cho a,b,c>0

\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:27

\(2,\)

Ta có

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Áp dụng BĐT cm ở câu 1

Suy ra đpcm

 

Vu Thuy Duong
Xem chi tiết
Yukru
24 tháng 8 2018 lúc 9:16

\(A=2a\left(a-6\right)-3\left(a^2-4a+1\right)\)

\(A=2a^2-12a-3a^2+12a-3\)

\(A=-a^2-3\)

\(-a^2\le0\) với mọi a

\(\Rightarrow-a^2-3\le-3\)

\(\Rightarrow-a^2-3< 0\)

Vậy A luôn có giá trị âm với mọi a

Quốc Anh
Xem chi tiết
baby của jake sim
17 tháng 4 2022 lúc 12:06

xét tam giác AHB và tam giác CAB có:

góc H = góc A = 90 độ

góc B chung

=> tam giác AHB ~ tam giác CAB

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC

maimai 310
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 9 2016 lúc 12:26

\(a^2+b^2+c^2+\frac{21}{4}=\left(a^2+4\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+1\right)\)

Mà theo bđt Cauchy : \(a^2+4\ge2\sqrt{4a^2}=4a\) ; \(b^2+\frac{1}{4}\ge2\sqrt{b^2.\frac{1}{4}}=b\) ; \(c^2+1\ge2\sqrt{c^2.1}=2c\)

Cộng các bđt trên theo vế được \(a^2+b^2+c^2+\frac{21}{4}\ge4b+b+2c\) (đpcm)

Lê Thị Phương Anh
8 tháng 9 2016 lúc 15:06

e ms lp 7 thoy ạ...bài này e chả hỉu j heets~~hic hic^^