Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Lai Đỗ
Xem chi tiết
Phạm Vĩnh Linh
23 tháng 6 2021 lúc 16:39

undefined

Nguyễn Thanh Vân
Xem chi tiết
Nguyễn Phương Nam
Xem chi tiết
Dương Diệu Linh
Xem chi tiết
jiyeontarakute
30 tháng 10 2015 lúc 12:35

Bạn vào câu hỏi tương tự nhé  Dương Diệu Linh

tống lê kim liên
Xem chi tiết
Lightning Farron
8 tháng 8 2016 lúc 7:29

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)  (\(k\in N\)*) 

\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk-3b}{2bk+3b}=\frac{2dk-3d}{2dk+3d}\)

Xét vế trái \(\frac{2a-3b}{2a+3b}=\frac{2bk-3b}{2bk+3b}=\frac{b\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)

Xét vế phải \(\frac{2c-3d}{2c+3d}=\frac{2dk-3d}{2dk+3d}=\frac{d\left(2k-3\right)}{d\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)

Từ (1) và (2) ta có Đpcm

Nguyễn Thị Minh Huyền
22 tháng 9 2019 lúc 8:31

Đặt ab=cd=kab=cd=k (k∈Nk∈N*)

⇒{a=bkc=dk⇒{a=bkc=dk⇒2bk−3b2bk+3b=2dk−3d2dk+3d⇒2bk−3b2bk+3b=2dk−3d2dk+3d

Xét vế trái 2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)

Xét vế phải 2c−3d2c+3d=2dk−3d2dk+3d=d(2k−3)d(2k+3)=2k−32k+3(2)ok

Liễu Lê thị
Xem chi tiết
Tô Hà Thu
7 tháng 11 2021 lúc 9:23

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Nguyễn Thảo Trang
7 tháng 11 2021 lúc 9:25

vì a/b = c/d

theo dãy tỉ số bằng nhau ta có

a/b =c/d = a+c/b+d = a-c/b-d (đỗi vị trí)

⇒  2a-2b/2a+3b = 2c-3d/2c-3d

Ngô Tường Vy
Xem chi tiết
Đặng Nguyễn Quỳnh Nga
Xem chi tiết
Lê Nguyên Hạo
21 tháng 7 2016 lúc 18:53

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)(đpcm)

GϹͳ. VΔŋɧ⑧⑤
Xem chi tiết
Nguyễn Duy Khang
8 tháng 2 2021 lúc 8:30

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(1\right)\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3b}\left(=\dfrac{2k+3}{2k-3}\right)\)

 

Aaron Lycan
8 tháng 2 2021 lúc 8:33

Áp dụng tính chất dãy tỉ số băng nhau,ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{2a}{2c}=\dfrac{3b}{3d}=>\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3d}{2c-3d}=>\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\left(đpcm\right)\)