phan tich da thuc thanh nhan tu
a/ 3x2+6xy+3y2-3z2
b/ 4y2-5y-6
c/ 3x-9xy-9y2+6y-1
d/ x4+x2y2+y4
phan tich da thuc thanh nhan tu
c/ 3x-9xy-9y2+6y-1
d/ x4+x2y2+y4
c/ 3x-9xy-9y2+6y-1
=3x.(1-3y)-(1-6y+9y2)
=3x.(1-3y)-(1-3y)2
=(1-3y)[3x-(1-3y)]
=(1-3y)(3x-1+3y)
d/ x4+x2y2+y4
=x4+2x2y2+y4-x2y2
=(x2+y2)2-x2y2
=(x2-xy+y2)(x2+xy+y2)
phan tich da thuc thanh nhan tu a, (3x+1)^2-(x+1)^2
b, 6x-6y-x^2+xy
\(a,\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
\(b,6x-6y-x^2+xy\)
\(=\left(6x-6y\right)-\left(x^2-xy\right)\)
\(=6\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left(6-x\right)\)
Phan tich da thuc thanh nhan tu
a/ 3x2y-6xy2
b/ 9-(x-y)2
a) 3x^2 y - 6xy^2 = 3xy ( x - 2y)
b) 9 - ( x- y)^2 = ( 3 )^2 - ( x- y)^2
= ( 3 -x + y )( 3 + x + y )
a/ \(3x^2y-6xy^2\)\(=3xy\left(x-2y\right)\) ( đây là p2 đặt nhân tử chung )
b/9-(x -y )2 =( 3 -x +y ) ( 3 + x+y ) ( dùng hđt số 3 để giải )
\(3x^2y-6xy^2\)
\(=3xy\left(x-2y\right)\)
\(9-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
phan tich da thuc thanh nhan tu
x^2 + 4y^2 +3x - 6y
giai dum mik vs
\(x^2+4y^2+3x-6y=\left(x^2+3x\right)-\left(4y^2+6y\right)=x\left(x+3\right)-2y\left(2y+3\right)\)
3.7: Su dung cac hang dang thuc de phan tich cac da thuc sau thanh nhan tu:
a) -y2 + 1/9
b) x4 - 256
c) 9 (x - 3)2 - 4 (x + 1)2
d) 25x2 - 1/81 x2y2
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
c) \(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=\left(3x-9\right)^2-\left(2x+2\right)^2\)
\(=\left(3x-9+2x+2\right)\left(3x-9-2x-2\right)\)
\(=\left(5x-7\right)\left(x-11\right)\)
\(a,=\left(\dfrac{1}{3}-y\right)\left(\dfrac{1}{3}+y\right)\\ b,=\left(x^2-16\right)\left(x^2+16\right)\\ =\left(x-4\right)\left(x+4\right)\left(x^2+16\right)\\ c,=\left[3\left(x-3\right)-2\left(x+1\right)\right]\left[3\left(x-3\right)+2\left(x+1\right)\right]\\ =\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)\\ =\left(x-11\right)\left(5x-7\right)\\ d,=\left(5x-\dfrac{1}{9}xy\right)\left(5x+\dfrac{1}{9}xy\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
Phan tich da thuc thanh nhan tu
P=x^2 - 6xy +9y^2
\(P=x^2-6xy+9y^2=\left(x-3y\right)^2\)
(Áp dụng 7 hằng đẳng thức đáng nhớ)
2x2y-4xy2+6xy
phan tich da thuc thanh nhan tu
\(2x^2y-4xy^2+6xy=2xy\left(x-2y+3\right)\)
\(2x^2y-4xy^2+6xy=2xy\cdot\left(x-2y+3\right)\)
Phan tich da thuc thanh nhan tu
a,7x+7y
b,2x2y-6xy2
phan tich da thuc thanh nhan tu 3x^4-48
\(3x^4-48=3\left(x^4-16\right)=3\left[\left(x^2\right)^2-4^2\right]\\ =3\left(x^2-4\right)\left(x^2+4\right)\\ =3\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)