tính giá trị A=\(\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\left(y\ne0,x+y\ne0\right)\)
Tính giá trị của biểu thức
\(P=\frac{x-y}{x+y}\). Biết \(x^2-2y^2=xy\left(x+y\ne0;y\ne0\right)\)
Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)
Vì \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-y^2=0\)
\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Theo đề bài thì có :
\(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Leftrightarrow x=2y\)
Từ đó ta lại có :
\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy .......
ta có
x2-2y2=xy
<=> x2 -xy -2y2 =0
<=> (x-2y)(x+y)=0
=>\(\orbr{\begin{cases}x=2y\\x+y=0\left(loại\right)\end{cases}}\)
nếu x=2y thì P=1/3
Tính giá trị của biểu thức: \(A=\frac{x-y}{x+y}\)
biết \(x^2-2y^2=xy\) \(\left(y\ne0;x+y\ne0\right)\)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)
\(\Leftrightarrow\)\(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\)nên \(x-2y=0\)\(\Leftrightarrow\)\(x=2y\)
Vậy \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Tính giá trị của biểu thức \(A=\dfrac{x-y}{x+y}\), biết: \(x^2-2y^2=xy\) (y\(\ne0\); \(x+y\ne0\))
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)
\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Vì \(x+y\ne0\) nên x-2y=0
hay x=2y
Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được:
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Vậy: \(A=\dfrac{1}{3}\)
Tính giá trị biểu thức \(A=\dfrac{x-y}{x+y};\) biết \(x^2-2y^2=xy\left(y\ne0;x+y\ne0\right)\)
Với \(x\ne0\)và \(y\ne0\)Chứng minh rằng
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)không phụ thuộc vào giá trị của x và y
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
tính giá trị của biểu thức ; \(P=\frac{x-y}{x+y}\) . biết x2-2y2=xy và \(x+y\ne0;y\ne0\)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-y^2-y^2-xy=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Đặc P ta có
P= x2 - 2y2 =xy
<=> x2 - y2 - y2 -xy =0
=> (x-1) (x+y) -y (x+y) -1
=> (x+y_(x-2y)=0
Vậy
x+y #0
=> x- 2y =0
=>x=2y
=>P=2y -y trên 2y + y =y trên 3y =1/3
bài 2 : rút gọn các phân thức sau :
a.\(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\)
b.\(\frac{x^2+4x+3}{2x+6}\left(x\ne-3\right)\)
c.\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\left(y\ne0;x+y\ne0\right)\)
d. \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\)
e. \(\frac{x^2-xy}{3xy-3y^2}\left(x\ne y,y\ne0\right)\)
f. \(\frac{4x^2-4xy}{5x^3-5x^2y}\left(x\ne0,x\ne y\right)\)
g. \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
https://hoc24.vn/hoi-dap/question/697806.html
xét hai số thực thay đổi \(x\ne0,y\ne0\)thỏa mãn \(xy\left(x+y\right)=x^2-xy+y^2.\)tìm giá trị lớn nhất của biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
tìm x,y biết: \(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\left(x,y\in Z,x\ne0,y\ne0\right)\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)