phân tích các đa thức thành nhân tử
a)x^3+1/27
b)(a+b)^3-(a-b)^3
Phân tích đa thức thành nhân tử
a) x^11+x+1
b) 8a^3+27b^3+64c^3-72abc
c) x^4+5x^3-12x^2+5x+1
Bài 1 : Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức :
a ) x^2-3
b) (a+b)^2-(a+b)^2
c) x^3-27b^3
Bài 2 : Phân tích các đa thức sau thành nhân tử bằng phương pháp nhóm các hạng tử :
1) a^2+2ab+b^2-c^2
2) x^2-y^2-4x+4
3) x^3-4x^2-8x+8
4) x^3-x
5) 5x^3-10x^2+5x
Bài 3 : Tính Nhanh :
a) 99^3+1+3*(99^2+99)
b) 10.2*9.8-9.8*0.2+10.2^2-10.2*0.2
c) 892^2+892*216+108^2
bài 1: a) \(x^2-3=x^2-\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)
b) \(\left(a+b\right)^2-\left(a+b\right)^2=\left(a+b+a+b\right)\left(a+b-a-b\right)=2a+2b=2\left(a+b\right)\)
c) \(x^3-27b^3=\left(x-3b\right)\left(x^2+3xb+b^2\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức thành nhân tử :
a) (a3 -b3) + (a-b)2
b) (8a3-27b3)-2a(4a2-9b2)
a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)
\(=\left(2a-3b\right)\cdot9b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)
= ...........
Phân tích các đa thức thành nhân tử: a) (x + y)3 + (x – y)3 . b) (x + 1)(x + 2)(x + 3)(x + 4) – 3.
b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-3\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-3\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+21\)
\(=\left(x^2+5x+3\right)\left(x^2+5x+7\right)\)
a, \(\left(x+y\right)^3+\left(x-y\right)^3=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)=2x\left(x^2+3y^2\right)\)
b, \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-3=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-3\)
Đặt \(x^2+5x+5=t\)
\(\left(t-1\right)\left(t+1\right)-3=t^2-4=\left(t-2\right)\left(t+2\right)\)
Theo cách đặt \(\left(x^2+5x+3\right)\left(x^2+5x+7\right)\)
a)\(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\left(x^2+2xy+y^2-x^2+xy-xy+y^2+x^2-2xy+y^2\right)\)
\(=2x\left(x^2+3y^2\right)\)
Phân tích đa thức thành nhân tử
a)\(a^3+3a^2+3a+1-27b\)
b)\(64x^3y+\frac{1}{4}yz^3\)
c)\(x^6-x^4+2x^3+2x^2\)
d)\(2x^3-x^2-1\)
Các bạn giúp mik nhé mik đang cần gấp
c, \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
\(=x^2\left(x+1\right)[x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
d,
\(2x^3-x^2-1\)
\(=2x^3-2x^2+x^2-x+x-1\)
\(=2x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(2x^2+x+1\right)\)
a) (x + 1)(x + 2)(x + 3)(x + 4) - 24
= [(x + 1)(x + 4)].[(x + 2)(x + 3)] - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24
= (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 24
= (x2 + 5x + 5)2 - 1 - 24 = (x2 + 5x + 5)2 - 25
= (x2 + 5x)(x2 + 5x + 10)
= x(x + 5)(x2 + 5x + 10)
mấy bạn giúp mh dc ko?
Phối hợp các phương pháp để phân tích các đa thức sau thành nhân tử:
a) 36-4a2+20ab-25b2
b) a3+3a2+3a+1-27b2
x3+3x2+3x+1-3x2-3x
a)\(36-4a^2+20ab-25b^2=6^2-\left(4a^2-20ab+25b^2\right)\)
\(=6^2-\left[\left(2a\right)^2-2.2a.5b+\left(5b\right)^2\right]\)
\(=6^2-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
b)\(a^3+3a^2+3a+1-27b^3=\left(a+1\right)^3-\left(3b\right)^3\)(chỗ này mình sửa 27b2 thành 27b3 vì mình nghĩ nhầm đề)
\(=\left(a+1-3b\right)\left[\left(a+1\right)^2+\left(a+1\right)3b+\left(3b\right)^2\right]\)
\(=\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)
c)\(x^3+3x^2+3x+1-3x^2-3x=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
a) 36-4a2+20ab-25b2
= 6^2 - (4a^2 - 20xb + 25b^2)
= 6^2 - (2a - 5b)^2
= [6 - (2a - 5b)] [6 + (2a - 5b)]
= (6 - 2a + 5b) (6 + 2a -5b)
a) \(6^2-\left(\left(2a\right)^2-2.2a.5b+\left(5b\right)^2\right)\)
\(=6^2-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
b) \(=\left(a+1\right)^3-\left(3b\right)^3\)
\(=\left(a+1-3b\right)\left(\left(a+1\right)^2+3b\left(a+1\right)+\left(3b\right)^2\right)\)
\(=\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)
c) \(=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(\left(x+1\right)^2-3x\right)\)
\(=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
Phân tích các đa thức sau thành nhân tử
x^2((x^2+1/x^2)+6(x-1/x)+7)
(a-b)^3+(b-c)^3+(c-a)^3