Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thi hong nhung
17 tháng 7 2018 lúc 8:55

Những hằng đẳng thức đáng nhớ (Tiếp 1)Những hằng đẳng thức đáng nhớ (Tiếp 1)

rjehjhgehj
Xem chi tiết
Nguyen Do Cong
Xem chi tiết
PARK SHIN HYE
Xem chi tiết
Game Master VN
2 tháng 7 2017 lúc 17:10

ai ,mình tích  lại

Game Master VN
2 tháng 7 2017 lúc 17:11

2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2 
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y) 
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm 
dau = cay ra <=> x=y=z=1/3

Duong Thi Nhuong
Xem chi tiết
Lightning Farron
23 tháng 6 2017 lúc 22:46

a)\(P=x^2+4x+2xy+3y^2+5y+2017\)

\(=x^2+2xy+y^2+4y+4+4x+2y^2+y+\dfrac{1}{8}+\dfrac{16103}{8}\)

\(=\left(x+y+2\right)^2+2\left(y^2+\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{16103}{8}\)

\(=\left(x+y+2\right)^2+2\left(y+\dfrac{1}{4}\right)^2+\dfrac{16103}{8}\ge\dfrac{16103}{8}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{7}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(Q=-x^2+4x-3y^2+6y+2017\)

\(=-x^2+4x-4-3y^2+6y+3+2024\)

\(=-\left(x^2-4x+4\right)-\left(3y^2-6y-3\right)+2024\)

\(=-\left(x-2\right)^2-3\left(y^2-2y-1\right)+2024\)

\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\ge2024\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Nguyễn Như Nam
23 tháng 6 2017 lúc 22:57

Ta có:

\(P=x^2+4x+2xy+3y^2+5y+2017\)

\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+2y^2+y+2013\)

\(=\left[x+\left(y+2\right)\right]^2+2\left(y^2+y+0,25\right)+2012,5\)

\(=\left(x+y+2\right)^2+2\left(y+0,5\right)^2+2012,5\ge2012,5\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=0\\y+0,5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)

Vậy \(minP=2012,5\) khi \(\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)

Ta có:

\(Q=-x^2+4x-3y^2+6y+2017\)

\(=-\left(x^2-4x+4\right)-3\left(y^2-2y+1\right)+2024\)

\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\le2024\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(maxQ=2024\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Ngoc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:17

a: \(0.5xy\left(8y-8x\right)-6y\left(y-x\right)-4xy^2+6xy\)

\(=4xy^2-4x^2y-6y^2+6xy-4xy^2+6xy\)

\(=-4x^2y+12xy-6y^2\)

Lê Tuấn Nghĩa
Xem chi tiết

Ta có : \(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)

\(\Rightarrow\left(4x^2+y^2+z^2-4xy-4zx+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\forall x,y,z\\\left(y-3\right)^2\ge0\forall y\\\left(z-5\right)^2\ge0\forall z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-y-z\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-3-5=0\\y=3\\z=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=8\\y=3\\z=5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\left(1\right)\)

Lại có : \(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)

Thay \(\left(1\right)\)vào \(S\),ta được :

\(S=0^{2017}+\left(-1\right)^{2017}+1^{2017}\)

    \(=0-1+1=0\)

Vậy \(S=0\)

Khách vãng lai đã xóa
Trần Ích Bách
Xem chi tiết
trần thảo lê
20 tháng 12 2017 lúc 20:39

\(\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2+10z+25\right)=0\)

\(\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z+5\right)^2=0\)

\(\left[{}\begin{matrix}2x-y-z=0\\y-3=0\\z+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\y=3\\z=-5\end{matrix}\right.\)

còn phần tính S bạn xem bạn có chép sai đề ko nha