Tính :
(Sin α - Cos α)^2 + 2Sin α + Cos α + 1
(Sin α - Cos α)^2 - (Sin α - Cos α)^2 + 2
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
Chứng minh các hệ thức:
a) \(\dfrac{cos\text{ α }}{1-sin\text{ α}}=\dfrac{1+sin\text{ α}}{cos\text{ α}}\)
b)\(\dfrac{\left(sin\text{ α }+cos\text{ α }\right)^2-\left(sin\text{ α }-cos\text{ α }\right)^2}{sin\text{ α }cos\text{ α }}=4\)
a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)
b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
=4
Chứng minh R
sin4α + sin2α . cos2α + cos2α = 1
\(\dfrac{sin\text{α}}{1-cos\text{α}}\)+\(\dfrac{sin\text{α}}{1+cos\text{α}}\)+\(\dfrac{2}{sin\text{α}}\)
\(\dfrac{sin\text{α}}{1+cos\text{α}}\)+\(\dfrac{1+cos\text{α}}{sin\text{α}}\)=\(\dfrac{2}{sin\text{α}}\)
a: VT=sin^2a(sin^2a+cos^2a)+cos^2a
=sin^2a+cos^2a
=1=VP
b: \(VT=\dfrac{sina+sina\cdot cosa+sina-sina\cdot cosa}{1-cos^2a}=\dfrac{2sina}{sin^2a}=\dfrac{2}{sina}=VP\)
c: \(VT=\dfrac{sin^2a+1+2cosa+cos^2a}{sina\left(1+cosa\right)}\)
\(=\dfrac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\dfrac{2}{sina}=VP\)
rút gọn:
1, 1-sin2α
2, (1+cos α)(1-cos α)
3, 1+sin2α+cos2α
4,sin α-sin α.cos2α
5, sin4α+cos4α+2.sin2α.cos2α
6,tan2α-sin2α.tan2α
7, cos2α+tan2α.cos2α
8, tan2α.(2.cos2α+sin2α-1)
\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
Rút gọn:
B = sin4 α + cos4 α + 2sin2 α*cos2 α
D = sin2 α*sin2 ß + sin2 α*cos2 ß + cos2 α
hì, hồi nãy câu E cho mk/e sửa đề lại nhé
E = cos6 α + sin6 α + 3 sin2 α* cos2 α
(α: an pha, ß: bê ta)
A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)
D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)
Tính :
(Sin α - Cos α)^2 + 2Sin α + Cos α + 1
(Sin α - Cos α)^2 - (Sin α - Cos α)^2 + 2
a, bt sin α=3/5, tính A= 5 \(sin^2\)α + 6\(cos^2\)α.
b,bt cos α= 4/5, tính B= 4\(sin^2\)α - 5\(cos^2\)α.
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)
\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)
Chứng minh : \(\dfrac{sin^2\text{α}}{cos\text{α}\left(1+tan\text{α}\right)}-\dfrac{cos^2\text{α}}{sin\text{α}\left(1+cot\text{α}\right)}-sin\text{α}-cos\text{α}\)