Cho x, y thỏa mãn: x\(\sqrt{2019-y^2}\) + y\(\sqrt{2019-x^2}\)= 2019. Tính x2 + y2 .
Cho x, y là 2 số thỏa mãn:
(x+\(\sqrt{x^2+2019}\))(y+\(\sqrt{y^2+2019}\))=2019
Tính x+y
cho 2 số thực x,y thỏa mãn (x+\(\sqrt{x^2+2019}\))\(\left(y+\sqrt{y^2+2019}\right)\)=2019. tính giá trị biểu thức P=x4+x3y+3x2+xy-2y2+1
Cho x, y thoả mãn:\(\sqrt{x+2019}+\sqrt{2020-x}-\sqrt{2019-x}=\sqrt{y+2019}+\sqrt{2020-y}-\sqrt{2019-y}\)
Cm :x=y
Cho x, y là các số thực dương thỏa mãn x+y= 2019. Tìm GTNN của biểu thức P= \(\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}\)
Giúp mk vs nhé!
\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)
\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)
\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)
\(\Rightarrow P\ge\sqrt{4038}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)
Ta có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
Lại có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)
\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)
Dấu = khi \(x=y=\dfrac{2019}{2}\)
cho x,y ,z là các số dương thỏa mãn:xy+yz+zx=2019
Tính gtrị bt\(P=x\sqrt{\frac{\left(y^2+2019\right).\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right).\left(x^2+2019\right)}{y^{2^{ }}+2019}}+z\sqrt{\frac{\left(x^2+2019\right).\left(y^2+2019\right)}{z^2+2019}}\)
Có \(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)
\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)
Có \(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)
=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)
= xy+xz+xy+yz+xz+yz
=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)
=4038
Vậy P=4038
cho \(\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)=2019\). CM: \(x^{2019}+y^{2019}=0\)
Từ gt suy ra: \(x+\sqrt{x^2+2019}=\dfrac{2019}{y+\sqrt{y^2+2019}}=\sqrt{y^2+2019}-y\).
Tương tự: \(y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\).
Do đó dễ dàng suy ra được: \(x+y=0\).
\(\Rightarrow x=-y\Rightarrow x^{2019}+y^{2019}=x^{2019}+\left(-x\right)^{2019}=0\left(đpcm\right)\).
Cho (x+\(\sqrt{x^2+2019}\))(y+\(\sqrt{y^2+2019}\))=2019
Tính giá trị A=2019(x+y)
bạn lm ra 2 hướng
hướng 1 ) liên hợp với (x - căn (x2+2019)) ( nhân vào 2 vế)
biến đổi nhân ra => ....(1)
hướng 2) liên hợp với (y-căn (y2 + 2019)) ( nhân vào 2 vế)
biến đổi nhân ra=>....(2)
từ (1) và (2) => x=-y hay x=y gì đó
r tính A
cái này mình có lm r , khổ cái web ko cho up ảnh lên , bn chịu khó lm cho quen nha
học tốt
ôi trời ơi ai cứ đi spam dis thế
mik có lm j sai đâu , web không cho up ảnh , bài dài chịu thôi
\(\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)=2019\)
\(\Rightarrow\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)\left(\sqrt{x^2+2019}-x\right)=2019\left(\sqrt{x^2+2019}-x\right)\)
\(\Leftrightarrow\left(y+\sqrt{y^2+2019}\right)\left(\left(\sqrt{x^2+2019}\right)^2-x^2\right)=2019\left(\sqrt{x^2+2019}-x\right)\)
\(\Leftrightarrow\left(y+\sqrt{y^2+2019}\right)\left(x^2+2019-x^2\right)=2019\left(\sqrt{x^2+2019}-x\right)\)
\(\Leftrightarrow2019\left(y+\sqrt{y^2+2019}\right)=2019\left(\sqrt{x^2+2019}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\)(1)
Tương tự ta có:
\(\Leftrightarrow x+\sqrt{x^2+2019}=\sqrt{y^2+2019}-y\)(2)
Cộng vế theo vế (1) vả (2) ta có:
\(x+y+\sqrt{x^2+2019}+\sqrt{y^2+2019}=\sqrt{x^2+2019}+\sqrt{y^2+2019}-x-y\)
\(\Leftrightarrow2x+2y=0\)\(\Leftrightarrow x+y=0\)
\(\Rightarrow A=2019\left(x+y\right)=2019.0=0\)
Cho \(\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)=2019\)
Tính x + y
\(\left(x+\sqrt{x^2+2019}\right)\left(\sqrt{x^2+2019}-x\right)=x^2+2019-x^2=2019\)
\(\Rightarrow\sqrt{x^2+2019}-x=y+\sqrt{y^2+2019}\left(2\right)\)
Tương tự \(\sqrt{y^2+2019}-y=x+\sqrt{x^2+2019}\left(1\right)\)
Lấy (2) - (1) được: -2x = 2y
<=> -x = y
<=> x + y = 0
Tìm tất cả các số nguyên dương x,y,z thỏa mãn : \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố