tìm GTNN của biểu thức: -x^2 - 6x -11
a) Tìm GTLN của biểu thức: 6x-x^2-11
b) Tìm GTNN của biểu thức: x^2-5x-2a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
a) Tìm GTLN của biểu thức: 6x-x^2-11
b) Tìm GTNN của biểu thức: x^2-5x-2a) \(6x-x^2-11\)
\(=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-[\left(x-3\right)^2+2]\)
Mà: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow-\left(x-3\right)^2\le0\)
\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)
\(\Rightarrow A\le-2\)
Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)
b) \(x^2-5x-2\)
\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)
Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)
Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\) khi \(x=\frac{5}{2}\)
Tìm GTLN, GTNN của biểu thức: `C=(6x+11)/(x^2-2x+3)`
tìm GTLN,GTNN của biểu thức:
a) x^2-6x+11 b) -x^2+6x-11
khai triển hằng đẳng thức số một và 2 bạn ơi
a)\(x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Dấu "="xảy ra khi x=3
b)\(-x^2+6x-11\)
\(=-\left(x^2-6x+9\right)-2\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi x=3
Bài 6: a)Tìm GTLN, GTNN của biểu thức sau:
a. x2 – 6x +11 b. –x2 + 6x – 11
c) Chứng minh rằng: x2 + 2x + 2 > 0 với x Z
c: \(=\left(x+1\right)^2+1>0\forall x\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
Tìm GTLN hoặc GTNN của biểu thức:
A= 5x-x2
B= -x2+ 6x -11
A= 5x-x2= -x2+5x = -(x2-5x+25/4-25/4)= -(x-5/2)2+25/4
vì -(x-5/2)2< hoặc = 0 vs mọi x
nên - (x-5/2)+25/4< hoặc =25/4
dấu bằng xảy ra khi và chỉ khi x-5/2=0
=> x=5/2
câu b tg tự đặt dấu trừ ra ngoài rồi tách 11= 9+2 là ra giá trị lớn nhất của B=-2 tại x=3
Tìm GTNN của biểu thức
B=4x^2+4x-6
C=x^2+6x+11
D=x^2-3x+1
\(4x^2+4x+6\)
\(=\left(2x\right)^2+2.2x.1+1+5\)
\(=\left(2x+1\right)^2+5\ge5\)
\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)
\(x^2+6x+11\)
\(=x^2+2.x.3+9+2\)
\(=\left(x+3\right)^2+2\ge2\)
\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)
\(x^2-3x+1\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)
\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)
B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7
Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2
C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2
Vậy MinC = 2 khi x + 3 = 0 => x = -3
D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2
bài a của o0o I am a studious person o0o có lẽ sai
\(B=4x^2+4x-6=\left(4x^2+4x+1\right)-7=\left(2x+1\right)^2-7\)
có:\(\left(2x+1\right)^2\ge0\)
vậy GTNN của B = -7 tại x = -1/2
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Tìm GTNN và GTLN của biểu thức : B=6x+11/x^2-2x+3
N=6x+17/x^2+2
B= 6x+11/x^2-2x+3
= 9(x^2-2x+3)-9x^2+18x-27+6x+11/ x^2-2x+3
= 9 +
-(3x-4)^2/(x-1)^2+2
Vì (3x-4)^2 > hoặc = 0 với mọi x
=> -(3x-4)^2< hoặc =0
(x-1)^2+2>0 với mọi x
=> -(3x-4)^2/(x-1)^2+2< hoặc=0
=> B< hoặc =9
Vậy GTLN của B=9 khi x=4/3
Làm tương tự ta có gtnn của B=-1/2 khi x=-5
Chúc bạn học tốt!
Phần tìm gtnn của B:
Tách 6x+11=
-1(x^2-2x+3)/2
+ x^2/2 -x+3/2 + 6x+1
=> B= -1/2
+ (x^2+10x+25)/2(x^2-2x+3)
=> B> hoặc =-1/2
Vậy GTNN của B=-1/2 khi x=-5
Chúc bạn học tốt!