Câu 1: Chứng minh trong hình thang cân có 2 cạnh bên bằng nhau
Câu 2: Chứng minh trong hình thang cân có 2 đường chéo bằng nhau
chứng minh trong hình thang cân có 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau
Kéo dài \(DA,CB\)cắt nhau tại \(E\).
Xét tam giác \(CDE\)có:
\(\widehat{EDC}=\widehat{ECD}\)(vì \(ABCD\)là hình thang cân)
suy ra \(\Delta CDE\)cân tại \(E\).
\(\Rightarrow ED=EC\)
\(AB//CD\Rightarrow\widehat{EAB}=\widehat{EDC},\widehat{EBA}=\widehat{ECD}\)(góc đồng vị)
suy ra \(\widehat{EAB}=\widehat{EBA}\)
\(\Rightarrow\Delta EAB\)cân tại \(E\)
\(\Rightarrow EA=EB\)
Suy ra \(ED-EA=EC-EB\Leftrightarrow AD=BC\).
Xét tam giác \(ADC\)và tam giác \(BCD\)có:
\(AD=BC\)
\(\widehat{ADC}=\widehat{BCD}\)
\(CD\)chung
suy ra \(\Delta ADC=\Delta BCD\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(hai cạnh tương ứng)
chứng minh hình thang cân bằng cách chứng minh hình thang có 2 cạnh bên bằng nhau được ko ạ ?
Không nhé bạn, đây chỉ là tính chất của hình thang cân thôi
cho hing2 thang ABCD có 2 đường chéo AC bằng đường chéo BD chứng minh hình thang có 2 đường chéo bằng nhau thì là hình thang cân
Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E.
Ta có:
Góc ACD = góc BED (tính chất góc hình bình hành)
mà gócBDE = gócBED ( BDE là tam giac cân tại B)
=> góc ACD= góc BDC
xét 2 tam giác ACD và tam giác BDC có:
+ AC = BD ( gt)
+ góc ACD = góc BDC
+có cùng cạnh CD
=> tam giác ACD = tam giác BDC ( cạnh,góc,cạnh)
xét hình thang ABCD:
AD = BC vì tam giác ACD = tam giác BDC
=> ABCD là hình thang cân.
Vậy hình thang có hai đường chéo bằng nhau là hình thang cân.(đpcm)
Bài 3: Cho hình thang cân ABCD. Đáy nhỏ AB bằng cạnh bên BC và đường chéo AC vuông góc với cạnh bên AD.
a) Tính các góc của hình thang cân.
b) Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ.
bài 1
chứng minh rằng hình thang cân có hai đường chéo bằng nhau là hình thang cân
bài 2
tính các góc của hình thang cân, biết một góc bằng 50 độ
bài 3
hình thang cân ABCD có đáy nhỏ AB=cạnh bên AD. cm CA là tia phân giác của góc C
CÁC BẠN GIÚP MÌNH NHANH NHÉ MÌNH ĐANG CẦN GẤP
Giả sử hình thang là ABCD,
Qua B kẻ đường thẳng với AC cắt DC tại E
a)Ta có ACD=BAC (AB//CD)
mà ACD =BEC =>BEC=BAC
Xét tam giac ABC va tam giác ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
mà BEC=ACD(đồng vị)=>ACD=BDC
xét tam giac ACD va tam giac BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tam giac ACD=tam giác BDC
=>ADC=BCD
=>ABCD la hình thang cân (dfcm)
Câu nào sau đây là sai ? A. Hình thang có 2 cạnh bên là hình thang vân B. Hình thang có 2 góc ở một đáy là hình thang cân C. Hình thang có 2 đường chéo bằng nhau là hình thang cân D. Hình thang có 1 góc vuông là hình thang vuông
Chứng minh dấu hiệu nhận biết: Hình thang có 2 đường chéo bằng nhau là hình thang cân. (c/m hai góc ở đáy bằng nhau).
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
1.
+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC
=> tam giác ODC cân tại O => OD = OC
mà AD = BC => OA = OB
+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA
=> Tam giác ODB = OCA (c - g - c)
=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA
=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)
Từ (1)(2) => OE là đường trung trực của CD
=> OE vuông góc CD mà CD // AB => OE vuông góc với AB
Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường trung trực
vậy OE là đường trung trực của AB
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.