Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Quế Ngân

1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.

2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.

Lê Nguyên Hạo
28 tháng 8 2016 lúc 16:03

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB

 


Các câu hỏi tương tự
Thuỳ Linh Mai
Xem chi tiết
Văn Hoàng Huy
Xem chi tiết
Chien Hong Pham
Xem chi tiết
Majimy Madridista Jmg
Xem chi tiết
tran minh trang
Xem chi tiết
Cu Ben
Xem chi tiết
meo con
Xem chi tiết
Quỳnh Hany
Xem chi tiết
minh anh
Xem chi tiết