1. Xét \(\Delta ABD\) và \(\Delta BAC\) có:
AB chung
AD = BC ( theo tính chất của hình thang cân)
BD = AC ( theo t/c của hình thang cân )
=> \(\Delta ABD=\Delta BAC\left(c.c.c\right)\)
=> Góc DBA = CAB
=> Tam giác OAB cân tại O
Vậy OA=OB
1. Xét \(\Delta ABD\) và \(\Delta BAC\) có:
AB chung
AD = BC ( theo tính chất của hình thang cân)
BD = AC ( theo t/c của hình thang cân )
=> \(\Delta ABD=\Delta BAC\left(c.c.c\right)\)
=> Góc DBA = CAB
=> Tam giác OAB cân tại O
Vậy OA=OB
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
Cho hình thang ABCD (AB// CD). Gọi E là giao điểm của 2 đường thẳng AD và BC. Gọi M, N, P, Q theo thứ tự là các trung điểm của của các đoạn thẳng AE, BE, AC, BD. chứng minh tứ giác MNPQ là hình thang.
Cho hình thang cân ABCD gọi S là giao điểm của hai cạnh bên Ad và BC O là giao điểm của hai đường chéo AC và BD chứng minh rằng đường thẳng SO du qua trung điểm của AB và CD
Cho tứ giác ABCD có AB = AD, BC = CD
a) Chứng minh rằng AC là đường trung trực của đoạn thẳng BD.
b) Biết góc BDA= 110°, góc BCD= 50°. Tính góc ABC, góc ADC.
c) Gọi I là giao điểm của AC và BD, chứng minh ∆ABI = ∆ADI
Cho tứ giác ABCD có AB = AD, BC = CD
a) Chứng minh rằng AC là đường trung trực của đoạn thẳng BD.
b) Biết góc BDA = 110°, góc BCD = 50°. Tính góc ABC, ADC.
c) Gọi I là giao điểm của AC và BD, chứng minh ∆ABI = ∆ADI
65. Tứ giác ABCD có AB=BC, CD=DA (hình cái diều). Chứng minh rằng điểm A đối xứng điểm C qua đường thẳng BD
66. Tam giác ABC có AB<AC. Gọi d là đường trung trực của BC. Vẽ điểm K đối xứng với điểm A qua đường thẳng d.
a) Tìm các đoạn thẳng đối xứng với đoạn AB qua d, đối xứng với đoạn thẳng AC qua d
b) Tứ giác AKCB là hình gì ? Tại sao ?
Cho hình thang ABCD, 2 đáy AB, CD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh :
a) Tam giác ANB cân.
b) MN là đường trung trực của đoạn thẳng AB
Cho hình thang cân ABCD, hai đáy AB,CD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh :
a) Tam giác ANB cân.
b) MN là trung trực của đoạn thẳng AB.
Cho hình thang cân ABCD (AB//CD) và CD=2AB. Gọi M , N , P lần lượt là trung điểm của các cạnh BC , CD , AD.
a. Chứng minh ABCN là hình thang.
b. Gọi O là giao điểm của AC và BN. Chứng minh ba điểm P , O , M thẳng hàng.
c. Chứng minh PO=2OM