Cho hình tahng ABCD, đáy nhỏ AB, AD vuông CD và AD=CD. Vẽ đường cao BH. Trên tia đối của tia DA lấy K sao cho DK=CH. Gọi E là giao điểm của hai đường thẳng AD và BC. Chứng minh rằng:
a) BC vuoog CK
b) \(\frac{1}{CD^2}=\frac{1}{CE^2}+\frac{1}{CB^2}\)
Cho hình thang ABCD có đáy nhỏ AB ,ADvuông góc CDvà AD=CD.Vẽ đường cao BH.Trên tia đối của tiaDA lấy điểm K sao cho DK=CH .Gọi E là giao diểm của hai đường thẳng AD và BC.CMR
1,bc vuông góc ck
2,\(\dfrac{1}{CD^2}=\dfrac{1}{CE^2}+\dfrac{1}{CB^2}\)
Do \(AD\perp CD\Rightarrow\) hình thang ABCD vuông tại A và D
\(\Rightarrow\) Tứ giác ABHD là hình chữ nhật (tứ giác có 3 góc vuông)
\(\Rightarrow AD=BH\) \(\Rightarrow BH=CD\)
Xét hai tam giác vuông BCH và CKD có:
\(\left\{{}\begin{matrix}BH=CD\\DK=CH\end{matrix}\right.\) \(\Rightarrow\Delta BCH=\Delta CKD\left(c.g.c\right)\) (1)
\(\Rightarrow\widehat{DCK}=\widehat{HBC}\)
\(\Rightarrow\widehat{BCK}=\widehat{BCH}+\widehat{DCK}=\widehat{BCH}+\widehat{HBC}=90^0\)
\(\Rightarrow BC\perp CK\)
b. Cũng từ (1) ta suy ra \(CB=CK\)
Áp dụng hệ thức lượng trong tam giác vuông ECK với đường cao CD:
\(\dfrac{1}{CD^2}=\dfrac{1}{CE^2}+\dfrac{1}{CK^2}=\dfrac{1}{CE^2}+\dfrac{1}{CB^2}\) (đpcm)
cho hình thang ABCD đấy nhỏ AB,AD vuông góc với CD vẽ đường cho BH trên tia đối của tia DA lấy điểm K sao cho DK=CH và AD cắt BC tại E
a)Cm BC vuông góc với CK
b)Cm 1/CD^2 =1/CE^2+1/CB^2
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M, trên tia đối của CB lấy điểm N sao cho AM =CN . Gọi Ilà giao điểm của MN và CD.
GọI E là trung điểm của MN, tia DE cắt BC tại F. Qua M vẽ đường thẳng song song với AD cắt DF tại H.
Chứng minh rằng : Tứ giác MFNH là hình thoi.
Chứng minh : Chu vi tam giác BMF không đổi khi m di động trên cạnh AB.
Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho: BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CE vuông góc với AE tại K. Gọi I là giao điểm của 2 đường thẳng BH và CK. Chứng minh rằng:
a, \(\Delta ABH\)=\(\Delta ACK\)
b, AI là tia phân giác của ∠DAE
c, HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ tia Ax và By sao cho BAx = 120 độ, ABy=60 độ. Trên tia By
lấy điểm C và trên tia đối của tia Ax lấy điểm D sao cho AD = BC. Gọi O là giao điểm của AB và CD.
a. Chứng minh O là trung điểm của mỗi đoạn thẳng AB, CD.
b. Qua O vẽ một đường thẳng cắt đường thẳng AD và BC lần lượt ở E và F. Chứng minh O là trung điểm của EF.
c. Gọi M, N lần lượt là trung điểm của AD, BC. Chứng minh O là trung điểm của MN.
Cho tam giác ABC vuông tại A có B ^ = 55 ° . Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia Cx vuông góc với AC. Trên tia Cx lấy điểm D sao cho CD = AB.
a) Tính số đo A C B ^
b) Chứng minh ∆ A B C = ∆ C D A và AD//BC.
c) Kẻ A H ⊥ B C ( H ∈ B C ) và C K ⊥ A D ( K ∈ A D ) . Chứng minh BH = DK.
d) Gọi I là trung điểm của AC. Chứng minh ba điểm H, I, K thẳng hàng và 3 đường thẳng AC, HK, BD cùng gặp nhau ở I.
Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AD = AB
a) Chứng minh Từ đó suy ra cân tại C.
b) Gọi M là trung điểm của CD. Qua D vẽ đường thẳng song song với BC, đường thẳng này cắt tia BM tại K. Chứng minh BC = DK và BC + BD > BK
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
b: Xét ΔMDK và ΔMCB có
góc DMK=góc CMB
MD=MC
góc MDK=góc MCB
=>ΔMDK=ΔMCB
=>DK=CB
BC+BD=BD+DK>BK
cho tam giác ABC có C < B. Gọi H là hình chiều của A trên đường thẳng BC. Trên tia BH lấy điểm D sao cho HB = HD. Gọi E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD. Chứng minh rằng:
a)D nằm trên HC
b)DE=DK
a: Trên tia BH có HB=HD
nên HB và HD là hai tia đối nhau
mà HB và HC là hai tia đối nhau
nên HD và HC là hai tia trùng nhau
=>\(D\in HC\)
b: Đề sai rồi bạn
Cho ∆ABC vuông tại A có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB.
a) Chứng minh ABC = ADC.
b) Gọi M là trung điểm của CD. Qua D vẽ đường thẳng song song với BC cắt BM tại E. Chứng minh: ∆CDE cân
c) Gọi I là giao điểm của AC và BE. Chứng minh: BC + BD > IM