Tìm các số thực u,v biết a^3+b^3=7 và u.v=-2
Các thiên tài hãy giải đi
Tìm hai số u,v trong mỗi trường hợp sau:
a) u+v = 29 và u.v = 198
b) u+v = \(3\sqrt{2}\) và u.v = 4
c) u-v = -2 và u.v = -80
d) \(u^2+v^2=13\) và u.v = 6
a) Vì u+v=29 và uv=198 nên u,v là hai nghiệm của phương trình:
\(x^2-29x+198=0\)
\(\Leftrightarrow x^2-18x-11x+198=0\)
\(\Leftrightarrow x\left(x-18\right)-11\left(x-18\right)=0\)
\(\Leftrightarrow\left(x-18\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-18=0\\x-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\\x=11\end{matrix}\right.\)
Vậy: u=18; v=11
Tìm hai số u, v trong mỗi trường hợp sau:
a) u + v = \(3\sqrt{2}\) và u.v =4
b) u - v = -2 và u.v = 80
c) \(u^2+v^2\) = 13 và u.v = 16
a) Vì \(u+v=3\sqrt{2}\) và uv=4
nên u,v là hai nghiệm của phương trình: \(x^2-3\sqrt{2}x+4=0\)
\(\Delta=\left(-3\sqrt{2}\right)^2-4\cdot1\cdot4=18-16=2>0\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3\sqrt{2}-\sqrt{2}}{2}=\sqrt{2}\\x_2=\dfrac{3\sqrt{2}+\sqrt{2}}{2}=2\sqrt{2}\end{matrix}\right.\)
Vậy: \(u=\sqrt{2};v=2\sqrt{2}\)
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v =15 ; u.v = 36
b) u + v = 4 ; u.v = 7
c) u + v = 9 ; u.v = -90
d) u ² + v ²= 13 ; u.v = 6
Giúp mình với mình đang cần gấp, cảm ơn trước ạ!!!o(╥﹏╥)o
a) u, v là nghiệm phương trình:
X^2 - 15 X + 36 = 0
\(\Delta=15^2-4.36=81\)
=> \(\orbr{\begin{cases}X=\frac{-\left(-15\right)+\sqrt{81}}{2}=12\\X=\frac{-\left(-15\right)-\sqrt{81}}{2}=3\end{cases}}\)
Vậy (u; v) = ( 12; 3 ) hoặc (u; v ) = (3; 12)
b) và c ) tương tự
d) \(u^2+v^2=\left(u+v\right)^2-2uv=13\)
=> \(\left(u+v\right)^2=25\)
=> u + v = 5 hoặc u + v = - 25
Có 2 TH:
TH1: u + v = 5 và uv= 6
TH2: u + v = -5 và uv = 6
Làm tương tự như câu a.
Tìm hai số u và v trong mỗi trường hợp sau:
a) \(u+v=8;u.v=15\)
b) \(u+v=-7;u.v=-18\)
c) \(u+v=5;u.v=-24\)
d) \(u-v=10;u.v=-21\)
Cảm ơn trước nhe
Cho số phức u và v. Xét các mệnh đề dưới đây
1. u + v = u + v
2. u − v = u − v
3. u . v = u . v
4. u v = u v v ≠ 0
Hỏi có bao nhiêu mệnh đề đúng trong 4 mệnh đề trên?
A. 1.
B. 2
C. 3
D. 4.
Đáp án B
Mệnh đề 1 và 2 sai; mệnh đề 3 và 4 đúng.
Cho số phức u và v. Xét các mệnh đề dưới đây
1. u + v = u + v
2. u − v = u − v
3. u . v = u . v
4. u v = u v v ≠ 0
Hỏi có bao nhiêu mệnh đề đúng trong 4 mệnh đề trên?
A. 1
B. 2
C. 3
D. 4
Đáp án B
Mệnh đề 1 và 2 sai; mệnh đề 3 và 4 đúng
Tìm 1 số tự nhiên biết rằng nếu đem số đó nhân với 3 rồi trừ đi 12 hoặc đem số đó chia cho 3 rồi cộng với 12 thì được hai kết quả bằng nhau.
Trả lời:số phải tìm là?
tớ rất biết ơn những thiên tài có thể giải bài toán này ra,tớ đã tìm được câu trả lời bằng cách đoán mò và thử lại thế nên hãy giải ra nhé!Ai mà ghi độc kết quả thì khỏi trả lời,kết quả bằng 9 và tớ cần cách giải.Xin cảm ơn trước!
Gọi số cần tìm là a Ta có:
a x 3 - 12 = a : 3 + 12
a x 3 - a x 1/3 = 24
a x 8/3 = 24
a = 24 : 8/3
a = 9
ĐS: a = 9
Gọi số cần tìm là a Ta có:
a x 3 - 12 = a : 3 + 12
a x 3 - a x 1/3 = 24
a x 8/3 = 24
a = 24 : 8/3
a = 9
ĐS: a = 9
Gọi số cần tìm là x:
Ta có:
3x-12=(x/3)+12
3x-12=(x/3)+(36/3)
3x-12=(x+36)/3
3(3x-12)=x+36
9x-36=x+36
9x =x+36+36
9x =x+72
8x =72
x = 72/8
x = 9
ĐS: 9
xét hàm số
f(x)=\(\sqrt[4]{2x}+2\sqrt[4]{6-x}+\sqrt{2x}+2.\sqrt{6-x}\)
D \(\in\left[0;6\right]\)
f'(x)= \(\frac{1}{2.\left(2x\right)^{\frac{3}{4}}}-\frac{1}{2.\left(6-x\right)^{\frac{3}{4}}}+\frac{1}{\sqrt{2x}}-\frac{1}{\sqrt{6-x}}\)
đặt u=\(\left(2x\right)^{\frac{3}{4}}\) \(\left(u\ge0\right)\), v=\(\left(6-x\right)^{\frac{3}{4}}\) \(\left(v\ge0\right)\)
f'(x)= \(\frac{1}{2}.\frac{\left(v^3-u^3\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\frac{\left(v-u\right).\left(v^2+u.v+u^2\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\left(v-u\right).\left(\frac{v^2+u.v+u^2}{\left(u.v\right)^3}+\frac{1}{u.v}\right)\)
\(=\left(v-u\right).g\left(u,v\right)\) ... với g(u,v) > 0
Vậy f'(x) = [(√(2x) - √(6-x)] .G(x), G(x)>0
f'(x)=0 <=> √(2x) - √(6-x) = 0 <=> x=2
lập bảng biến thiên:
tự vẽ
tính f(0), f(2), f(6)
ta được f(x)=m có 2 nghiệm
<=> f(0) \(\le\)m < f(2)
<=> \(2.6^{\frac{1}{4}}+2\sqrt{6}\le m< 3.2^{\frac{1}{4}}+6\)
Biết có hai số u và v thỏa mãn u – v = 10 và u.v = 11. Tính |u+ v| ?
A. 11
B. 12
C. 10
D. 13
Đáp án B
Ta có: u.v =11 nên u.(-v) = -11 (1)
Từ u – v = 10 nên u + (- v) = 10 (2)
Khi đó; u và (-v) là nghiệm phương trình:
x 2 - 10 x - 11 = 0 (*)
Do a - b + c = 1 -(-10 ) + (-11) = 0 nên phương trình (*) có 2 nghiệm là:
x 1 = -1 và x 2 = 11
* Trường hợp 1: Nếu u = -1 và –v = 11
=> v = -11 nên u + v = -12
* Trường hợp 2: nếu u = 11 và –v = -1 thì v = 1
Suy ra: u + v = 12
Trong cả 2 trường hợp ta có: |u + v| = 12