2) Cho
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}\)
Với mọi \(n\ge2;n\in N\)
So sánh A với 1
Với mọi \(n\in N,n\ge2\)
So sánh :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)với 1
CM BĐT : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\) với mọi số tự nhiên \(n\ge2.\)
Đặt biểu thức trung gian là :
\(B=\frac{1}{2^2-1}+\frac{1}{3^2-1}+\frac{1}{4^2-1}+...+\frac{1}{n^2-1}\) thì \(A< B\)
Còn \(B=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n-1}-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right)< \frac{1}{2}.\frac{3}{2}=\frac{3}{4}\)
Vậy \(A< 3< \frac{3}{4}< 1.\)
Cách 2. Gọi biểu thức trên là A.Ta làm trội:
\(\frac{1}{x^2}\left(x\ge2\right)=\frac{1}{x.x}< \frac{1}{\left(x-1\right).x}\). Khi đó, áp dụng vào,ta có:
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\forall n\ge2^{\left(đpcm\right)}\)
CMR: với mọi số tự nhiên \(n\ge2\), tổng :
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không thể là số tự nhiên
CMR: với mọi số tự nhiên \(n\ge2\), tổng:
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không thể là số tự nhiên
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
3.
Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)
Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)
CMR: với mọi số nguyên dương \(n\ge2\) ta có \(\frac{2n+1}{3n+2}< \frac{1}{2n+2}+\frac{1}{2n+3}+...+\frac{1}{4n+2}< \frac{3n+2}{4\left(n+1\right)}\)
Tôi cũng là của FC Real Madrid ở Hà Nam.
Chúng mình kết bạn nhé.hihi.
Chứng minh rằng với mọi n\(\ge2\)ta có
\(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{4}\)
Lời giải:
Xét số hạng tổng quát \(\frac{1}{n^3}\)
\((n-1)(n+1)=n^2-1< n^2\)
\(\Rightarrow (n-1)n(n+1)< n^3\)
\(\Rightarrow \frac{1}{(n-1)n(n+1)}>\frac{1}{n^3}\)
Thay $n=2,3,4,.....$. Khi đó ta có:
\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\underbrace{ \frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{(n-1)n(n+1)}}_{A}(*)\)
Mà:
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{(n+1)-(n-1)}{(n-1)n(n+1)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{(n-1)n}-\frac{1}{n(n+1)}\)
\(=\frac{1}{2}-\frac{1}{n(n+1)}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{4}(**)\)
Từ \((*) ;(**)\Rightarrow \frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)
Ta có đpcm.
CMR
A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...........+\frac{1}{n^2}\)với \(n\ge2\)không là số tự nhiên
Ta có A>1
\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
=> 1<A<2 => A không là số tự nhiên
Bài 1 : Cmr :
a, \(a+\frac{1}{a-1}\ge3\) với mọi a>1
b, \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a \(\in R\)
Bài 2 : Cho a>0. Cmr \(\frac{a^2+5}{\sqrt{a^2+4}}\ge2\)
Bài 3 : Cho a,b,c>0. Cmr \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )