Lời giải:
Xét số hạng tổng quát \(\frac{1}{n^3}\)
\((n-1)(n+1)=n^2-1< n^2\)
\(\Rightarrow (n-1)n(n+1)< n^3\)
\(\Rightarrow \frac{1}{(n-1)n(n+1)}>\frac{1}{n^3}\)
Thay $n=2,3,4,.....$. Khi đó ta có:
\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\underbrace{ \frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{(n-1)n(n+1)}}_{A}(*)\)
Mà:
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{(n+1)-(n-1)}{(n-1)n(n+1)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{(n-1)n}-\frac{1}{n(n+1)}\)
\(=\frac{1}{2}-\frac{1}{n(n+1)}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{4}(**)\)
Từ \((*) ;(**)\Rightarrow \frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)
Ta có đpcm.