Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lan Anh
Xem chi tiết
Mới vô
23 tháng 4 2017 lúc 19:54

A)

\(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\\ \Leftrightarrow2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\)

\(2A^2+2B^2\ge A^2+2AB+B^2\\ \Leftrightarrow A^2+B^2\ge2AB\\ \Leftrightarrow A^2+B^2-2AB\ge0\)

\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (1)

\(A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow A^2+B^2\ge2BA\\ \Leftrightarrow A^2+B^2-2BA\ge0\)

\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (2) Từ (1), (2) ta có: \(2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\left(đpcm\right)\)
Nguyễn Lê Như Minh
Xem chi tiết
Trần Lê Anh Quân
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Minh Hoàng
10 tháng 3 2021 lúc 23:15

Áp dụng bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) ta có:

\(8\left(a^4+b^4\right)\ge4\left(a^2+b^2\right)^2=\left[2\left(b^2+c^2\right)\right]^2\ge\left(a+b\right)^4\).

Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
25 tháng 7 2016 lúc 8:44

3) Chứng minh bằng biến đổi tương đương ; \(2\left(a^2+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\)(Chia cả hai vế cho a+b > 0)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

b) Bạn biến đổi tương tự.

Minh Đức
25 tháng 7 2016 lúc 8:34

3) \(a^2-2ab+b^2\ge0\Leftrightarrow2a^2-2ab+2b^2\ge a^2+b^2\)

\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\Leftrightarrow\left(a+b\right)\left(2a^2-2ab+2b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2-2ab+2b^2\ge a^2+b^2\)(đúng với a,b>0)

Minh Đức
25 tháng 7 2016 lúc 8:40

4) \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow\left(a+b\right)\left(4a^2-4ab+4b^2\right)\ge\left(a+b\right)\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)(do a,b>0)

\(\Leftrightarrow3x^2-6xy+3y^2\ge0\Leftrightarrow3\left(x-1\right)^2\ge0\)(đúng)

Nano Thịnh
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
ngonhuminh
10 tháng 4 2018 lúc 7:57


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

kuroba kaito
10 tháng 4 2018 lúc 12:36

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

Quỳnh Anh
Xem chi tiết
Trần Minh Hoàng
15 tháng 1 2021 lúc 19:17

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

Trần Minh Hoàng
15 tháng 1 2021 lúc 19:52

\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh

 

hoàng thị huyền trang
Xem chi tiết
Đinh Đức Hùng
14 tháng 1 2018 lúc 14:53

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

hoàng thị huyền trang
14 tháng 1 2018 lúc 14:58

cảm ơn nhiều nha. chúng ta kết bạn được không?

TÔI KHÔNG BIẾT
14 tháng 1 2018 lúc 15:01

theo bđt bu-nhi-a cốp-xki thì

(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)

còn bạn chưa biết thì

<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3

,<=>a^2xb^4+b^2xa^4>=2a^3xb^3

<=>(axb^2-a^2xb)^2>=0(luôn đúng)