giá trị lớn nhất 5.[3/2]^2-/x-11/
77) a) tính giá trị nhỏ nhất của biểu thức A=(x-1)(x-3)+11 b)tính giá trị lớn nhất của biểu thức B=5-4x^2+4x
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1. tim x biết
a, -12(x-5)+7(3-x)=5
b,(x-3)+(x-2)+...+10+11=11
2atim giá trị nhỏ nhất của biểu thức:7-(x-3)^2
b tim giá trị nhỏ nhất cua biểu thức:15+/x-3/
c tim giá trị lớn nhất của biểu thức:21-/x+5/
d tim giá trị lớn nhất của biểu thức:18-(x+3)^2
3a chứng minh n(3n+1)là số chắn
b chứng minh a(a+1)(a-1)chia hết cho 6
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
a) Tìm giá trị nhỏ nhất:
A = /x - 3/ +1
b) Tìm giá trị lớn nhất
B = -100 - /7 - x/
c) Tìm giá trị lớn nhất
C = -(x +1) ^2 - /2-y/ +11
d) Tìm giá trị nhỏ nhất
D = (x - 1)^2 + /2y + 2/ + 3
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
Cho \(A=\sqrt{x+2}+\dfrac{3}{11};B=\dfrac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trị lớn nhất của B
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
Bài 1 Tính giá trị nhỏ nhất hoặc lớn nhất
A= |x+5| + 1
B= | 2x + 1|+ | -y- 5| - 2
C= ( 2x + 1 ) ^2 + |-y + 1 | + 11/2
D= -( x+1 )^2 - | y-1| - 3
Bài 2 Tính giá trị nhỏ nhất hoặc lớn nhất
A= | x + 1 | + | x + 7 | + | x + 20 | +| x- (-37)
B= | x - 10 | + | x - 3 | + | x - 5 |
C= | x - 1 | + | x - 5 |
Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E:
A= x2-4x+1 D= 5-8x-x2
B= 4x2+4x+11 E= 4x-x2+1
C= (x-1).(x+3).(x+2).(x+6)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
A= x2 - 4x +1
= x2 - 4x + 4 - 3
= (x-2)2 -3
Ta có (x-2)2 ≥ 0 ∀ x
⇒ (x-2)2 -3 ≥ -3 ∀ x
Vậy AMin= -3 tại x=2
B= 4x2+4x+11
= 4x2+4x+1+10
= (2x+1)2+10
Ta có (2x+1)2 ≥ 0 ∀ x
⇒ (2x+1)2+10 ≥ 10 ∀ x
Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)
C=(x-1)(x+3)(x+2)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x2+5x-6) (x2+5x+6)
= (x2+5x)2 -36
Ta có (x2+5x)2 ≥ 0 ∀ x
⇒ (x2+5x)2 -36 ≥ -36 ∀ x
Vậy CMin=-36 tại x=0 hoặc x= -5
tìm giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức sau trong các điều kiện đã chỉ ra
A = √x - 2/x - 3√x + 11 với x lớn hơn hoặc bằng 0
Đề đọc khó hiểu. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Bài 2:Tìm giá trị lớn nhất của biểu thức:
A=4x-x^2+3
B=x-x^2
C=11-10x-x^2
D=5.(x^2+2x+5)
a: Ta có: \(A=-x^2+4x+3\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-x^2+x\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Câu d đề sai bạn nhé, biểu thức này chỉ có min, không có max

2 . Tìm giá trị lớn nhất , giá trị nhỏ nhất của :
a . A = | x - 5 | - 46
b . B = -55 + | x - 1 |
c . A = - | 4 x - 8 | + 50
d . B = 11 - | 3 x - 9 |
a. ta có với mọi x | x-5| >=0
|x-5|-46 lớn hơn hoặc bằng 46
Dấu = xảy ra <=> x-5=0
=>x=5
Amin=46<=>x=5