Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cù thị lan anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 22:03

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

Nguyễn Tuấn Dũng
Xem chi tiết
Akai Haruma
30 tháng 10 2023 lúc 19:17

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$

cù thị lan anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 23:12

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

Akai Haruma
17 tháng 9 2023 lúc 17:52

Lời giải:

a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$

$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.

$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$

$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$

d. 

$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$

$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$

$=-x^2y+4x^2-2xy^2-10x$

$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 9 2019 lúc 11:44

Áp dụng bất đẳng thức Cosi ta có:

1 32 32 x 29 x + 3 y  ≤  1 4 2 32 x + 29 x + 3 y 2 = 1 8 2 61 x + 3 y

Tương tự

1 32 32 y 29 y + 3 x  ≤  1 8 2 61 y + 3 x

=> P ≤  4 2 x + y  ≤  4 2 x 2 + 1 2 + y 2 + 1 2 = 8 2

Vậy P min =  8 2 <=> x = y = 1

Lê Minh Đức
Xem chi tiết
Đặng Ngọc Quỳnh
3 tháng 6 2021 lúc 19:32

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\left(2\right)\\\left(y-1\right)^2\ge0\left(3\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\end{cases}\left(\forall x;y\inℝ\right)}}\)

\(\Rightarrow VT_{\left(1\right)}\ge\left(2x+2y+2\right)\left(2x+2y+2\right)\left(x;y\ge0\right)\)

\(\Leftrightarrow VT_{\left(1\right)}\ge4\left(x+y+1\right)^2\)(4)

Đặt \(3x+y+2=a;3y+x+b\Rightarrow a+b=4\left(x+y+1\right)\)

Lại có: \(\left(a-b\right)^2\ge0\left(\forall a;b\inℝ\right)\left(5\right)\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

\(\Leftrightarrow\frac{16\left(x+y+1\right)^2}{4}\ge\left(3x+y+2\right)\left(3y+x+2\right)\)

\(\Leftrightarrow4\left(x+y+1\right)^2\ge\left(3x+y+2\right)\left(3y+x+2\right)=VP_{\left(1\right)}\left(6\right)\)

Từ (4) và (6) => \(VT_{\left(1\right)}\ge VP_{\left(1\right)}\)

\(\Rightarrow VT_{\left(1\right)}=VP_{\left(1\right)}\)

Dấu '=' xảy ra đồng thời ở (2), (3), (5) 

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\3x+y+2=3y+x+2\end{cases}}\Leftrightarrow x=y=1\) 

Khách vãng lai đã xóa
vu van tu
Xem chi tiết
nguyễn thị maianh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:44

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

Bùi Minh Khang
Xem chi tiết