Tìm GTNN của biểu thức :
x2-2xy+2y2+2x-10y+17
Tìm giá trị nhỏ nhất của biểu thức A = x 2 + 2 y 2 – 2xy + 2x – 10y
A. A = 3
B. A = -17
C. A = -3
D. A = 17
A = x 2 + 2 y 2 – 2 x y + 2 x – 10 y ⇔ A = x 2 + y 2 + 1 – 2 x y + 2 x – 2 y + y 2 – 8 y + 16 – 17 ⇔ A = ( x 2 + y 2 + 12 – 2 . x . y + 2 . x . 1 – 2 . y . 1 ) + ( y 2 – 2 . 4 . y + 4 2 ) – 17 ⇔ A = ( x – y + 1 ) 2 + ( y – 4 ) 2 – 17
Vì với mọi x; y nên A ≥ -17 với mọi x; y
=> A = -17
⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4
Vậy A đạt giá trị nhỏ nhất là A = -17 tại x = 3 y = 4
Đáp án cần chọn là: B
Tìm giá trị nhỏ nhất của biểu thức A = x 2 + 2 y 2 – 2xy + 2x – 10y
A. 17
B. 0
C. -17
D. -10
A = x 2 + 2 y 2 – 2 x y + 2 x – 10 y ⇔ A = x 2 + y 2 + 1 – 2 x y + 2 x – 2 y + y 2 – 8 y + 16 – 17 ⇔ A = ( x 2 + y 2 + 1 2 – 2 . x . y + 2 . x . 1 – 2 . y . 1 ) + ( y 2 – 2 . 4 . y + 4 2 ) – 17 ⇔ A = ( x – y + 1 ) 2 + ( y – 4 ) 2 – 17
Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0 với mọi x, y nên A ≥ -17 với mọi x, y
=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4
Vậy A đạt giá trị nhỏ nhất là A = -17 tại x = 3 y = 4
Đáp án cần chọn là: C
tìm giá trị nhỏ nhất của biểu thức A = x2 + 2y2 – 2xy + 2x – 10y
\(A=\left[\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1=3\\y=4\end{matrix}\right.\)
Tìm GTNN của :
P = x2 - 2xy + 2y2 + 2x - 10y + 1
Giúp em với ạ em cần gấp
Em cảm ơn ạ
\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)
\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)
dấu = xảy ra khi và chỉ khi y=4,x=3
Tìm giá trị nhỏ nhất của biểu thức
A= x2 + 2y2 - 2xy + 2x - 10y
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)
Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
tìm GTNN của các bt
a, A=2x2+y2-2xy-2x+3
b,B=x2-2xy+2y2+2x-10y+17
c,C=x2-xy+y2-2y-2x
d,D=x2+xy+y2-3y-3x
e,E=2x2+2xy +5y2-8x-22y
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
Tìm GTNN của biểu thức F = x2– 2xy + 2y2 – 2y +2022
Ai giúp mình với
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
tìm giá trị lớn nhất của biểu thức
A=x2-2xy +2y2+2x+2y+20
Bạn nên sửa lại đề là tìm GTNN
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2+4y+4+15\\ A=\left(x-y+1\right)^2+\left(y+2\right)^2+15\ge15\\ A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy GTNN của A là 15