Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đấng ys
Xem chi tiết
Ánh Đặng Minh
Xem chi tiết
Do Van Gioi
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2022 lúc 21:47

a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)

\(=16m^2-32m+16+16m-40\)

\(=16m^2-16m-24\)

\(=8\left(2m^2-2m-3\right)\)

Để pT có nghiệm kép thì \(2m^2-2m-3=0\)

hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)

b: Thay x=2 vào PT, ta được:

\(4+8\left(m-1\right)-4m+10=0\)

=>8m-8-4m+14=0

=>4m+6=0

hay m=-3/2

Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)

=>x2=8

Tiến Vũ
Xem chi tiết
Lưu Thành Minh
28 tháng 5 2018 lúc 21:34

a) a và c trái dấu => pt luôn có nghiệm kép với mọi m

b) Ta có đenta=(-2(m-4))- 4(m2+m+3) = 4m2 - 64 - 4m2 - 4m - 12 = -74-4m

Để pt có nghiệm kép thì đenta>0 hay -74-4m>0 => m>-19 

hoangcat2 le
Xem chi tiết
đấng ys
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 18:22

Pt trùng phương chỉ có các trường hợp

- Vô nghiệm

- Có 2 nghiệm phân biệt

- Có 4 nghiệm phân biệt

- Có 2 nghiệm kép

- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))

Không tồn tại trường hợp có 3 nghiệm pb

Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 18:22

\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)

Đặt \(t=x^2\), pt trở thành:

\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)

Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0

\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)

Vậy \(m=\dfrac{1}{2}\)

 

Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 22:49

Với \(m=0\Rightarrow-x+1< 0\Rightarrow x>1\Rightarrow\) pt có nghiệm (thỏa mãn)

Với \(m\ne0\) BPT vô nghiệm khi và chỉ khi:

\(mx^2+\left(2m-1\right)x+m+1\ge0\) nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(2m-1\right)^2-4m\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-8m+1\le0\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{1}{8}\)

\(\Rightarrow\) BPT đã cho có nghiệm khi \(m< \dfrac{1}{8}\)