cho các số thực không âm thỏa mãn điều kiện : \(\sqrt{a}+\sqrt{b}=2\)
Timg giá trị lớn nhất giá trị nhỏ nhất của biểu thức \(T=a\sqrt{a}+b\sqrt{b}\)
Cho các số thực không âm a,b,c thỏa mãn a + b + c =2021 .Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)
Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lại có:
\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)
\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)
Do đó:
\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)
\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)
\(Q^2\ge4\left(a+b+c\right)\ge4\)
\(\Rightarrow Q\ge2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Cho các số thực không âm $a, b, c$ thỏa mãn: $a+b+c=2021$. Tìm giá trị lớn nhất và giả trị nhỏ nhất của biểu thức: $P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}$.
\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)
Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)
(Refer ;-;)
Cho các số thực không âm a,b,c thỏa mãn a + b + c = 2021. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
áp dụng bunhia - cốpxki
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126< =>P=\sqrt{12126}\)
vậy MAX P=\(\sqrt{12126}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
Áp dụng BĐT Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)
\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)
Ta có: \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(=2\left(a+b+c\right)+2\left[\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(c+a\right)}+\sqrt{\left(c+a\right)\left(a+b\right)}\right]\)
\(=4042+2\left[\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(c+a\right)}+\sqrt{\left(c+a\right)\left(a+b\right)}\right]\)
Mà \(\left(a+b\right)\left(b+c\right)\ge\left(0+b\right)\left(b+0\right)=b^2\)
và \(\left(b+c\right)\left(c+a\right)\ge c^2\) ; \(\left(c+a\right)\left(a+b\right)\ge a^2\)
\(\Rightarrow P\ge4042+2\left(a+b+c\right)=4042+4042=8084\)
\(\Rightarrow P\ge2\sqrt{2021}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=2021\\b=c=0\end{cases}}\) và các hoán vị của nó
Vậy \(Min\left(P\right)=2\sqrt{2021}\Leftrightarrow\hept{\begin{cases}a=2021\\b=c=0\end{cases}}\)
cho các số thực không âm a,b,c thỏa mãn a2+b2+c2=1
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=\(\sqrt{\frac{a+b}{2}}+\sqrt{\frac{b+c}{2}}+\sqrt{\frac{c+a}{2}}\)
Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v
cho các số thực a,b,c không âm thỏa mãn a + b + c =1
Tìm giá trị nhỏ nhất của biểu thức \(K=\sqrt{24a+25}+\sqrt{24b+25}+\sqrt{24c+25}\)
1≥a=>a≥a2=>24a+25= 4a+20a+25≥4a2+2.2a.5+25=(2a+5)2
=>\(\sqrt{24a+25}\)≥2a+5
cmtt=> K≥ 2(a+b+c)+15=17
dấu "=" xảy ra <=> (a,b,c)~(1,0,0)
Với các số thực không âm a,b thỏa mãn: a+b=1, tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{1+3a}+\sqrt{1+2022b}\)
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
Cho a, b, c là các số thực không âm thỏa mãn điều kiện a+b+c=3
Tìm giá trị lớn nhất của biểu thức:
\(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
Không mất tính tổng quát giả sử: \(\left(b-a\right)\left(b-c\right)\le0\)
\(\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c+bc^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2\) (Vì\(a,b,c\ge0\) )
\(\Leftrightarrow ab^2+bc^2+ca^2\le b\left(a+c\right)^2=\frac{1}{2}.2b\left(a+c\right)\left(a+c\right)\le\frac{4\left(a+b+c\right)^3}{27}=4\)Vì a+b+c=3
Áp dụng bđt Cô si cho 2 số không âm, ta có:
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{a\left(b^2+2\right)}{2}=\frac{ab^2}{2}+a\)
Tương tự với 2 số còn lại rồi cọng lại, ta có;
\(P\le\frac{ab^2+bc^2+ca^2}{2}+a+b+c\le\frac{4}{2}+3=5\)
Dấu bằng xảy ra khi a=0, b=1, c=2 và các hoán vị
(Hơi lười ghi một chút thông cảm)
Thế nếu câu này tìm min thì làm kiểu gì ạ câu này min=3 nhưng em chưa biết làm