Tìm số nguyên dương n để:
n+13/n-2 (là phân số tối giản)
Tìm n nguyên dương để phân số n+13/n-2 tối giản.
Tìm số nguyên dương n để \(\frac{n+13}{n-2}\) là phân số tối giản.
Ta có: \(\dfrac{n+13}{n-2}=\dfrac{n+\left(15-2\right)}{n-2}=\dfrac{n+15-2}{n-2}=\dfrac{n-2+15}{n-2}=\dfrac{n-2}{n-2}+\dfrac{15}{n-2}=1+\dfrac{15}{n-2}\)
Với ĐK: n thuộc tập N, n khác 2)
Áp dụng tính chất: Nếu cộng 1 với 1 phân số tối giản ta được một phân số tối giản
\(\Rightarrow1+\dfrac{15}{n-2}\)tối giản \(\Rightarrow\dfrac{15}{n-2}\)tối giản
Vì phân số tối giản có ƯC = 1
Suy ra ƯC(15;n-2) = 1
=> 15 chia hết cho 3 và 5. Vì thế n - 2 ko chia hết cho 3 và 5
=> n - 2 là số chẵn
Áp dụng thuật toán Euclide ta có:
(15;n - 2) = (n-2; 5) = (n - 2 ; 3) = 1
Từ đây suy ra : n = {3;5) thì biểu thức trên tối giản
Mình đã làm ở đây rồi nhé:
Câu hỏi của Nguyễn Khánh Nguyên - Học và thi online với HOC24
đúng vì số nguyên tố chỉ chia hết cho1 cà chính nó
Tìm số nguyên dương n để \(\frac{n+13}{n-2}\) là phân số tối giản.
Giúp nha toán 6 đó
ta có n+13/n-2 là phân số tối giản khi ƯCLN(n+13;n-2)=1
Mà [(n+13)-(n-2)]=15 nên ƯCLN (n-2;15)=1
suy ra 15 không chia hết cho n-2
suy ra n-2 không thuộc ước của 15
mà n là SND nên n-2>=-1
n-2 không thuộc{-1;1;3;5;15}
n không thuộc {1;3;5;7;17;2}(vì để n+13/n-2là phân số thì n khác 2)
vậy n thỏa mãn với toàn bộ số nguyên dương khác 1;3;5;7;17 và2
Tìm tất cả các số nguyên dương n để các phân số sau là tối giản: \(\frac{n+13}{n-2};\frac{18n+3}{21n+7}\)
1. Tìm tất cả số nguyên dương n để phân số \(\frac{n+13}{n-2}\)tối giản.
2 Tìm tất cả các số tự nhiên để phân số \(\frac{5n+6}{6n+5}\)không tối giản.
Nhớ ghi cách giải cụ thể nhen!!!!!!!!!!!
Cho A=3n-13/n-1(n thuộc Z)
Tìm n là số nguyên để A là phân số tối giản
Lời giải:
Gọi $d=ƯCLN(3n-13, n-1)$
$\Rightarrow 3n-13\vdots d; n-1\vdots d$
$\Rightarrow 3(n-1)-(3n-13)\vdots d$
$\Rightarrow 10\vdots d\Rightarrow d=1,2,5,10$
Để phân số trên tối giản thì $d\neq 2,5,10$
Điều này xảy ra khi $n-1\not\vdots 2$ và $n-1\not\vdots 5$
$\Leftrightarrow n\neq 2k+1$ với mọi $k$ là số nguyên bất kỳ và $n\neq 5m+1$ với $m$ là số nguyên bất kỳ.
Tìm số nguyên dương n nhỏ nhất để các phân số sau đều là các phân số tối giản
1/n+3, 2/n+4,..., p-2/n+p, p-1/n+p+1 (p là số nguyên tố lẻ cho trước)
cho m và n là các số nguyên dương thỏa mãn m/n là phân số tối giản và phân số 4m+3n/5m+2n không tối giản
tìm tất cả các số nguyên dương n đê n+13/n-1; 18n+3/21n+7 là phân số tồi giản