Bài 1: Chứng minh rằng:
a) Nếu p và \(p^2\)+8 là các số nguyên tố thì \(p^2\)+2 là số nguyên tố.
b) Nếu p và \(8p^2\)+1 là các số nguyên tố thì 2p+1 lá số nguyên tố.
c) Nếu p và \(p^2\)+2 là các số nguyên tố thì \(p^3\)+2 là số nguyên tố.
Bài 2: Tìm số nguyên tố p sao cho 2p+1 là bình phương của 1 số tự nhiên.
Bài 3: Tìm số nguyên tố p sao cho 7p+1 là lập phương của 1 số tự nhiên.
Bài 4: Tìm các số nguyên dương x và y sao cho \(x^4+4y^4\) là số nguyên tố
Bài 5: Tìm số nguyên tố p sao cho \(p^2\)+23 có đúng 6 ước nguyên dương.
Bài 6:
a) Chứng minh rằng trong 10 số lẻ liên tiếp lớn hơn 5, tồn tại 4 hợp số.
b) Hãy chỉ ra 10 số lẻ liên tiếp lớn hơn 5, trong đó chỉ có đúng 4 hợp số.
HELP